Matches in SemOpenAlex for { <https://semopenalex.org/work/W3196374518> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W3196374518 abstract "Mackenzie Rive located in Yukon and Northwest Territories is the longest river system in Canada and an important transportation link. During the ice free season it is used for shipping transportation, while during freeze up time it serves as an ice road for trucks. Therefore, knowledge of ice conditions is essential to enable save navigation. Due to the difficulty of in-situ observation, remote sensing offers an effective instrument for river ice measurements. SAR data thereby enables gap free time series as it is an active sensor independent from sun illumination and cloud conditions. However, separating ice and open water in SAR data remains a challenging task due to the principals of the radar signal. On the one hand it is sensitive to surface roughness influencing weather conditions such as wind and rain affecting the appearance of water. On the other hand, ice shows different backscatter characteristics during freeze up and melting period. Therefore threshold or cluster based approaches encounter their limits in separating the features spaces of both classes demanding a more complex approach to cover these diverse patterns in the SAR image.In this study a Convolutional Neural Network (CNN) and TerraSAR-X data is used to map open water and ice in a time series between January 2014 and December 2015. Convolutional Neural Networks have proven great potential in classification of satellite images. Not focusing on isolated pixel values but regarding larger receptive fields they are also taking into account texture and shape information. Thus they are suitable to define feature spaces for ice and water.The test site covers the Mackenzie River Delta at the estuary of the Arctic Ocean. A U-Net with 18 convolutional layers and skip connections was used for training and classification. The four Kennaugh elements (K0 total intensity, K3 double/single bounce, K4 polarization, K7 torsion) were calculated from a total of 47 dual polarized HH/VV TerraSAR-X scenes. 42 of the 47 scenes show complete ice free respectively freeze up conditions and were used to train and validate the network with a total of 4000 patches (3000 for training and 1000 for validation). The remaining 5 scenes show transition conditions during the melt or freeze up time in spring or autumn and were used to test the neural network after training phase.The capability of the network to recognize class specific features in the SAR data is illustrated by visualizing the trained filters of the network showing typical SAR image structures of ice and water. Limitations of the approach occur for hybrid forms of water and ice that show features of both classes.The model was driven to best performance by adjusting hyper parameters including patch size, batch size, number of epochs, number of filters and filter size after each training run. Obtained results for the test images prove that a combination of a CNN and TerraSAR-X data is able to reliably separate open water from ice." @default.
- W3196374518 created "2021-09-13" @default.
- W3196374518 creator A5032791474 @default.
- W3196374518 creator A5038152163 @default.
- W3196374518 creator A5057709839 @default.
- W3196374518 date "2019-01-01" @default.
- W3196374518 modified "2023-09-27" @default.
- W3196374518 title "TerraSAR-X Ice/Non-Ice Mapping of the Mackenzie River Using a Convolutional Neural Network" @default.
- W3196374518 hasPublicationYear "2019" @default.
- W3196374518 type Work @default.
- W3196374518 sameAs 3196374518 @default.
- W3196374518 citedByCount "0" @default.
- W3196374518 crossrefType "journal-article" @default.
- W3196374518 hasAuthorship W3196374518A5032791474 @default.
- W3196374518 hasAuthorship W3196374518A5038152163 @default.
- W3196374518 hasAuthorship W3196374518A5057709839 @default.
- W3196374518 hasConcept C127313418 @default.
- W3196374518 hasConcept C136894858 @default.
- W3196374518 hasConcept C138885662 @default.
- W3196374518 hasConcept C153294291 @default.
- W3196374518 hasConcept C154945302 @default.
- W3196374518 hasConcept C205649164 @default.
- W3196374518 hasConcept C2776401178 @default.
- W3196374518 hasConcept C30354325 @default.
- W3196374518 hasConcept C39432304 @default.
- W3196374518 hasConcept C41008148 @default.
- W3196374518 hasConcept C41895202 @default.
- W3196374518 hasConcept C49204034 @default.
- W3196374518 hasConcept C554190296 @default.
- W3196374518 hasConcept C555944384 @default.
- W3196374518 hasConcept C62649853 @default.
- W3196374518 hasConcept C76155785 @default.
- W3196374518 hasConcept C81363708 @default.
- W3196374518 hasConcept C87360688 @default.
- W3196374518 hasConceptScore W3196374518C127313418 @default.
- W3196374518 hasConceptScore W3196374518C136894858 @default.
- W3196374518 hasConceptScore W3196374518C138885662 @default.
- W3196374518 hasConceptScore W3196374518C153294291 @default.
- W3196374518 hasConceptScore W3196374518C154945302 @default.
- W3196374518 hasConceptScore W3196374518C205649164 @default.
- W3196374518 hasConceptScore W3196374518C2776401178 @default.
- W3196374518 hasConceptScore W3196374518C30354325 @default.
- W3196374518 hasConceptScore W3196374518C39432304 @default.
- W3196374518 hasConceptScore W3196374518C41008148 @default.
- W3196374518 hasConceptScore W3196374518C41895202 @default.
- W3196374518 hasConceptScore W3196374518C49204034 @default.
- W3196374518 hasConceptScore W3196374518C554190296 @default.
- W3196374518 hasConceptScore W3196374518C555944384 @default.
- W3196374518 hasConceptScore W3196374518C62649853 @default.
- W3196374518 hasConceptScore W3196374518C76155785 @default.
- W3196374518 hasConceptScore W3196374518C81363708 @default.
- W3196374518 hasConceptScore W3196374518C87360688 @default.
- W3196374518 hasLocation W31963745181 @default.
- W3196374518 hasOpenAccess W3196374518 @default.
- W3196374518 hasPrimaryLocation W31963745181 @default.
- W3196374518 hasRelatedWork W1967162920 @default.
- W3196374518 hasRelatedWork W1987222616 @default.
- W3196374518 hasRelatedWork W2061759035 @default.
- W3196374518 hasRelatedWork W2095728453 @default.
- W3196374518 hasRelatedWork W2119609199 @default.
- W3196374518 hasRelatedWork W2169875978 @default.
- W3196374518 hasRelatedWork W2170576376 @default.
- W3196374518 hasRelatedWork W2463545068 @default.
- W3196374518 hasRelatedWork W25753813 @default.
- W3196374518 hasRelatedWork W2753217355 @default.
- W3196374518 hasRelatedWork W2765594745 @default.
- W3196374518 hasRelatedWork W2771124624 @default.
- W3196374518 hasRelatedWork W3013539039 @default.
- W3196374518 hasRelatedWork W3207532910 @default.
- W3196374518 hasRelatedWork W387468778 @default.
- W3196374518 hasRelatedWork W1567991290 @default.
- W3196374518 hasRelatedWork W2130491906 @default.
- W3196374518 hasRelatedWork W2172605534 @default.
- W3196374518 hasRelatedWork W2876160614 @default.
- W3196374518 hasRelatedWork W2967860446 @default.
- W3196374518 isParatext "false" @default.
- W3196374518 isRetracted "false" @default.
- W3196374518 magId "3196374518" @default.
- W3196374518 workType "article" @default.