Matches in SemOpenAlex for { <https://semopenalex.org/work/W3196375251> ?p ?o ?g. }
Showing items 1 to 54 of
54
with 100 items per page.
- W3196375251 endingPage "84" @default.
- W3196375251 startingPage "62" @default.
- W3196375251 abstract "Pediatric epilepsy presents some unique obstacles and opportunities in seizure control due to brain immaturity. Seizure detection and prediction, epileptogenic lesion identification, and clinical outcome prediction are all areas where multivariate analysis and machine learning methods are increasingly being employed in childhood epilepsy. This paper reviewed such studies in order to provide an overview of the subject, and discovered that these methods have made it possible to detect seizures on an electroencephalogram (EEG) and detect lesions on imaging automatically. Furthermore, despite the fact that seizure occurrence has long been thought to be random or unexpected, it has been discovered that seizures can occur non-randomly in complex patient-specific situations. Machine learning approaches can detect and distinguish preictal changes on EEG from interictal activities, allowing seizure occurrence to be predicted. However, there are significant challenges in seizure prediction, such as the need for sufficient clinical data and good machine learning algorithms to identify complex seizure occurrence patterns. In addition, outcome studies utilising multivariate analysis and machine learning techniques have revealed seizure outcome factors.Confirmatory studies are needed to make these relatively new procedures accurate and dependable, and more research is needed to improve them. Multivariate analysis and machine learning are expected to contribute more to identifying complex seizure patterns, epileptogenic lesions, and outcome predictors to improve seizure detection/prediction, lesion detection, and seizure outcome prediction, resulting in better seizure control to prevent seizure-related accidents/injury in children with epilepsy, lower mortality rates, improve quality of life and eventually set them free from seizures." @default.
- W3196375251 created "2021-09-13" @default.
- W3196375251 creator A5017947172 @default.
- W3196375251 date "2021-08-25" @default.
- W3196375251 modified "2023-09-23" @default.
- W3196375251 title "A Review of Multivariate Analysis and Machine Learning in Pediatric Epilepsy Research" @default.
- W3196375251 doi "https://doi.org/10.9734/bpi/nfmmr/v10/4107f" @default.
- W3196375251 hasPublicationYear "2021" @default.
- W3196375251 type Work @default.
- W3196375251 sameAs 3196375251 @default.
- W3196375251 citedByCount "0" @default.
- W3196375251 crossrefType "book-chapter" @default.
- W3196375251 hasAuthorship W3196375251A5017947172 @default.
- W3196375251 hasConcept C119857082 @default.
- W3196375251 hasConcept C154945302 @default.
- W3196375251 hasConcept C15744967 @default.
- W3196375251 hasConcept C161584116 @default.
- W3196375251 hasConcept C169760540 @default.
- W3196375251 hasConcept C17755696 @default.
- W3196375251 hasConcept C2778186239 @default.
- W3196375251 hasConcept C2779334592 @default.
- W3196375251 hasConcept C38180746 @default.
- W3196375251 hasConcept C41008148 @default.
- W3196375251 hasConcept C522805319 @default.
- W3196375251 hasConceptScore W3196375251C119857082 @default.
- W3196375251 hasConceptScore W3196375251C154945302 @default.
- W3196375251 hasConceptScore W3196375251C15744967 @default.
- W3196375251 hasConceptScore W3196375251C161584116 @default.
- W3196375251 hasConceptScore W3196375251C169760540 @default.
- W3196375251 hasConceptScore W3196375251C17755696 @default.
- W3196375251 hasConceptScore W3196375251C2778186239 @default.
- W3196375251 hasConceptScore W3196375251C2779334592 @default.
- W3196375251 hasConceptScore W3196375251C38180746 @default.
- W3196375251 hasConceptScore W3196375251C41008148 @default.
- W3196375251 hasConceptScore W3196375251C522805319 @default.
- W3196375251 hasLocation W31963752511 @default.
- W3196375251 hasOpenAccess W3196375251 @default.
- W3196375251 hasPrimaryLocation W31963752511 @default.
- W3196375251 hasRelatedWork W1533852351 @default.
- W3196375251 hasRelatedWork W1573659897 @default.
- W3196375251 hasRelatedWork W2008631356 @default.
- W3196375251 hasRelatedWork W2152994641 @default.
- W3196375251 hasRelatedWork W2325800933 @default.
- W3196375251 hasRelatedWork W2344423402 @default.
- W3196375251 hasRelatedWork W2533164945 @default.
- W3196375251 hasRelatedWork W2535389871 @default.
- W3196375251 hasRelatedWork W2556262614 @default.
- W3196375251 hasRelatedWork W3211344418 @default.
- W3196375251 isParatext "false" @default.
- W3196375251 isRetracted "false" @default.
- W3196375251 magId "3196375251" @default.
- W3196375251 workType "book-chapter" @default.