Matches in SemOpenAlex for { <https://semopenalex.org/work/W3196438618> ?p ?o ?g. }
- W3196438618 endingPage "1076" @default.
- W3196438618 startingPage "1065" @default.
- W3196438618 abstract "The miniaturization of liquid chromatography equipment is among the most important focus areas in chromatographic technology. It involves the miniaturization of the physical dimensions of the instrument, size of the separation material, and inner diameter of the column. The advantages of a reduced inner diameter of the column have been investigated for several decades, and can be summarized as follows. First, the sample consumption is lower, which is particularly beneficial when a limited amount of sample is available, as is the case with natural products, and in biochemistry and biomedicine. Second, the consumption of the mobile phase is reduced, making the process environmentally friendly and facilitating green chemistry. This allows the addition of more expensive solvent additives, such as chiral additives or isotopic reagents, while maintaining a low analysis cost. Moreover, the degree of band dilution in the column is lower than that with conventional liquid chromatography under the same sample injection conditions. Thus, enhanced mass sensitivity is achieved. Other benefits of a reduced inner diameter of the column include temperature control due to effective heat transfer through the columns and easier coupling to mass detectors, which is particularly advantageous for analyzing complex samples. Typically, the term “nano liquid chromatography” is associated with liquid chromatography, which employs capillary columns of inner diameters less than 100 μm and flow rates in the range of tens to hundreds of nanoliters per minute. Because of the extremely low flow rates and small column volume, the extra-column effect becomes more prominent. Thus, the requirements for every component of liquid chromatographs are augmented toward improving their performance and optimizing the extra-column band broadening of the entire system. The solvent delivery equipment should be able to pump mobile phases accurately and steadily at nanoliter-level flow rates. A gradient mode is required to achieve this, which implies that the lowest flow rate for a single pump unit should reach a few nanoliters per minute. A certain operating pressure is also necessary to employ columns with different inner diameters and particle sizes. A precise and repeatable sample injection procedure is essential for nano liquid chromatography. The injection volume and mode should be suitable for capillary columns, without inducing a significant extra-column effect. A higher-sensitivity detector should be employed, and sample dispersion should be limited. The improved tubing and connection method in nano liquid chromatography should offer stability, reliability, and ease of operation. The extra-column volume should also be restricted to suit nanoliter-level flow rates. Considering that most nano liquid chromatographic instruments have been coupled with a mass detector, this review mainly focused on nanoliter solvent delivery modules, sample injection modules, and tubing and connection modules. By searching and summarizing research articles, technical patents, and brochures of instrument manufacturers, technical routes and research progress on these modules were described in detail. The pump designs can be classified into four types. Pneumatic amplifying pumps have been used in ultra-high-pressure applications. The flow-splitting delivery system, though easy to realize, may lead to a large amount of solvent wastage. Splitless pumps, which are classified based on two main principles, are widely used. Some pumps based on other physical phenomena have been suggested; however, they lacked stability and robustness. Two types of injection modes have been utilized in nano liquid chromatography. The direct nanoliter injection mode typically takes advantage of the groove on the rotor of a switching valve. The trapping injection mode uses trap columns to enable the introduction of large sample volumes. As for the tubing and connection, a few appropriate designs can be acquired from commercial suppliers. The robustness has been improved using some patented technologies. The optimization principles and research progress on optical absorption detection are briefly introduced. Finally, commercial nano liquid chromatographic systems are compared by considering the pumps and injectors." @default.
- W3196438618 created "2021-09-13" @default.
- W3196438618 creator A5023071645 @default.
- W3196438618 creator A5026053703 @default.
- W3196438618 creator A5058347532 @default.
- W3196438618 creator A5058555918 @default.
- W3196438618 creator A5067908158 @default.
- W3196438618 date "2021-10-01" @default.
- W3196438618 modified "2023-09-27" @default.
- W3196438618 title "Research advances in nano liquid chromatography instrumentation" @default.
- W3196438618 cites W1014131614 @default.
- W3196438618 cites W1032472330 @default.
- W3196438618 cites W1810177802 @default.
- W3196438618 cites W1937976892 @default.
- W3196438618 cites W1963893739 @default.
- W3196438618 cites W1964739646 @default.
- W3196438618 cites W1968974540 @default.
- W3196438618 cites W1977416358 @default.
- W3196438618 cites W1978030932 @default.
- W3196438618 cites W1979027012 @default.
- W3196438618 cites W1979431647 @default.
- W3196438618 cites W1980115603 @default.
- W3196438618 cites W1983096073 @default.
- W3196438618 cites W1984389204 @default.
- W3196438618 cites W1985061705 @default.
- W3196438618 cites W1987654713 @default.
- W3196438618 cites W1991643667 @default.
- W3196438618 cites W1993122901 @default.
- W3196438618 cites W2001296271 @default.
- W3196438618 cites W2011179924 @default.
- W3196438618 cites W2013029357 @default.
- W3196438618 cites W2013639365 @default.
- W3196438618 cites W2015538298 @default.
- W3196438618 cites W2025809522 @default.
- W3196438618 cites W2029244359 @default.
- W3196438618 cites W2032221981 @default.
- W3196438618 cites W2032512041 @default.
- W3196438618 cites W2046782524 @default.
- W3196438618 cites W2050745788 @default.
- W3196438618 cites W2063227383 @default.
- W3196438618 cites W2067681012 @default.
- W3196438618 cites W2071575995 @default.
- W3196438618 cites W2081867079 @default.
- W3196438618 cites W2082661699 @default.
- W3196438618 cites W2091297067 @default.
- W3196438618 cites W2094014151 @default.
- W3196438618 cites W2112419844 @default.
- W3196438618 cites W2117104607 @default.
- W3196438618 cites W2125627619 @default.
- W3196438618 cites W2152588568 @default.
- W3196438618 cites W2183750838 @default.
- W3196438618 cites W2190551284 @default.
- W3196438618 cites W2289937625 @default.
- W3196438618 cites W2315087934 @default.
- W3196438618 cites W2316495912 @default.
- W3196438618 cites W2316626245 @default.
- W3196438618 cites W2320331924 @default.
- W3196438618 cites W2355787389 @default.
- W3196438618 cites W2405451924 @default.
- W3196438618 cites W2492017260 @default.
- W3196438618 cites W2520738239 @default.
- W3196438618 cites W2554185712 @default.
- W3196438618 cites W2558954774 @default.
- W3196438618 cites W2594079725 @default.
- W3196438618 cites W2614212613 @default.
- W3196438618 cites W2614945779 @default.
- W3196438618 cites W2623932086 @default.
- W3196438618 cites W265217662 @default.
- W3196438618 cites W2751814555 @default.
- W3196438618 cites W2778338461 @default.
- W3196438618 cites W2786242883 @default.
- W3196438618 cites W2891015942 @default.
- W3196438618 cites W2913763350 @default.
- W3196438618 cites W2943274336 @default.
- W3196438618 cites W2957799939 @default.
- W3196438618 cites W2979989598 @default.
- W3196438618 cites W3002645851 @default.
- W3196438618 cites W3119332927 @default.
- W3196438618 cites W3126606148 @default.
- W3196438618 cites W3160710485 @default.
- W3196438618 cites W941833992 @default.
- W3196438618 doi "https://doi.org/10.3724/sp.j.1123.2021.06017" @default.
- W3196438618 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34505428" @default.
- W3196438618 hasPublicationYear "2021" @default.
- W3196438618 type Work @default.
- W3196438618 sameAs 3196438618 @default.
- W3196438618 citedByCount "1" @default.
- W3196438618 countsByYear W31964386182023 @default.
- W3196438618 crossrefType "journal-article" @default.
- W3196438618 hasAuthorship W3196438618A5023071645 @default.
- W3196438618 hasAuthorship W3196438618A5026053703 @default.
- W3196438618 hasAuthorship W3196438618A5058347532 @default.
- W3196438618 hasAuthorship W3196438618A5058555918 @default.
- W3196438618 hasAuthorship W3196438618A5067908158 @default.
- W3196438618 hasBestOaLocation W31964386181 @default.
- W3196438618 hasConcept C113196181 @default.
- W3196438618 hasConcept C121332964 @default.
- W3196438618 hasConcept C147789679 @default.