Matches in SemOpenAlex for { <https://semopenalex.org/work/W3196444951> ?p ?o ?g. }
- W3196444951 abstract "Poor geometric quality is one of the main constraints that hinders the wide adoption of reverse engineering (RE) and additive manufacturing (AM). RE models from a single scan will most likely generate inaccurate representations of the original design due to the uncertainties existing in individual parts and scanning procedures. On the other hand, metrological methodologies for AM significantly differ from those for the traditional manufacturing processes. Conventional statistical methodologies overlook these three-dimensional (3D) feature-independent processing techniques.In this dissertation, we develop a novel statistical data analysis framework---volumetric data analysis (VDA)---to deal with the uniqueness of both technologies. In general, this framework also addresses the rising analytical needs of 3D geometric data. Through VDA, we can simultaneously analyze the measured points on the outer surfaces and their relationships to acquire manufacturing knowledge. The main goal of this dissertation is to apply the proposed framework in multiple RE and AM applications related to their geometric quality characteristics.First, we demonstrate a novel estimator to increase the precision of RE-generated models. We built a Bayesian model with prior domain knowledge to model the landmarks’ uncertainty. We also proposed a bi-objective optimization model to answer the RE process-planning questions, e.g., how many scans and parts are required to achieve the precision requirements.The second major contribution is a study of tolerance estimation procedure for the re-manufacturing of legacy parts. We propose a systematic geometric inspection methodology for the RE and AM systems. Moreover, based on the domain knowledge in production-process design and planning, we developed methods to estimate empirical tolerances from a small batch of legacy parts.The third major contribution of this dissertation is to design an automated variance modeling algorithm for 3D scanners. The algorithm utilizes a physical object’s local geometric descriptors and Bayesian extreme learning machines to predict the landmarks’ variances.Lastly, we introduce the VDA framework to AM-oriented experimental analysis. Specifically, we propose a high-dimensional hypothesis testing procedure to statistically compare the geometric production accuracy under two AM process settings. We present new visualization tools for deviation diagnostics to aid in interpreting and comparing the process outputs." @default.
- W3196444951 created "2021-09-13" @default.
- W3196444951 creator A5074519396 @default.
- W3196444951 date "2021-09-03" @default.
- W3196444951 modified "2023-09-24" @default.
- W3196444951 title "Volumetric Data Analysis for Reverse Engineering and Solid Additive Manufacturing: A Framework for Geometric Metrological Analysis" @default.
- W3196444951 cites W1543226262 @default.
- W3196444951 cites W1560787942 @default.
- W3196444951 cites W1563684785 @default.
- W3196444951 cites W1567631779 @default.
- W3196444951 cites W1580673759 @default.
- W3196444951 cites W1600851620 @default.
- W3196444951 cites W1969014399 @default.
- W3196444951 cites W1971532062 @default.
- W3196444951 cites W1972544340 @default.
- W3196444951 cites W1976222336 @default.
- W3196444951 cites W1977253099 @default.
- W3196444951 cites W1977373727 @default.
- W3196444951 cites W1982829198 @default.
- W3196444951 cites W1983735444 @default.
- W3196444951 cites W1985828105 @default.
- W3196444951 cites W1988057484 @default.
- W3196444951 cites W1996966912 @default.
- W3196444951 cites W1997573647 @default.
- W3196444951 cites W1999284314 @default.
- W3196444951 cites W2001387264 @default.
- W3196444951 cites W2006943762 @default.
- W3196444951 cites W2007233265 @default.
- W3196444951 cites W2009422376 @default.
- W3196444951 cites W2013303975 @default.
- W3196444951 cites W2020999234 @default.
- W3196444951 cites W2033564955 @default.
- W3196444951 cites W2037071707 @default.
- W3196444951 cites W2038655265 @default.
- W3196444951 cites W2039699495 @default.
- W3196444951 cites W2044382751 @default.
- W3196444951 cites W2045967206 @default.
- W3196444951 cites W2049421444 @default.
- W3196444951 cites W2058424129 @default.
- W3196444951 cites W2062116934 @default.
- W3196444951 cites W2067016937 @default.
- W3196444951 cites W2068953865 @default.
- W3196444951 cites W2069768695 @default.
- W3196444951 cites W2070036618 @default.
- W3196444951 cites W2071772012 @default.
- W3196444951 cites W2074001487 @default.
- W3196444951 cites W2074658631 @default.
- W3196444951 cites W2078380266 @default.
- W3196444951 cites W2079608295 @default.
- W3196444951 cites W2080518109 @default.
- W3196444951 cites W2081149604 @default.
- W3196444951 cites W2085020286 @default.
- W3196444951 cites W2086234878 @default.
- W3196444951 cites W2086688912 @default.
- W3196444951 cites W2090282705 @default.
- W3196444951 cites W2090752183 @default.
- W3196444951 cites W2093347532 @default.
- W3196444951 cites W2093656291 @default.
- W3196444951 cites W2095058224 @default.
- W3196444951 cites W2095180151 @default.
- W3196444951 cites W2095303958 @default.
- W3196444951 cites W2111072639 @default.
- W3196444951 cites W2111502387 @default.
- W3196444951 cites W2111533800 @default.
- W3196444951 cites W2118304946 @default.
- W3196444951 cites W2125186487 @default.
- W3196444951 cites W2132660986 @default.
- W3196444951 cites W2136602355 @default.
- W3196444951 cites W2136654652 @default.
- W3196444951 cites W2139219132 @default.
- W3196444951 cites W2140023854 @default.
- W3196444951 cites W2141482686 @default.
- W3196444951 cites W2142953063 @default.
- W3196444951 cites W2150657707 @default.
- W3196444951 cites W2152617511 @default.
- W3196444951 cites W2153504150 @default.
- W3196444951 cites W2157202423 @default.
- W3196444951 cites W2161767008 @default.
- W3196444951 cites W2164527419 @default.
- W3196444951 cites W2169779569 @default.
- W3196444951 cites W2281353092 @default.
- W3196444951 cites W2291510844 @default.
- W3196444951 cites W2295124130 @default.
- W3196444951 cites W2336917436 @default.
- W3196444951 cites W2402430133 @default.
- W3196444951 cites W2412107630 @default.
- W3196444951 cites W2412321691 @default.
- W3196444951 cites W2417214409 @default.
- W3196444951 cites W2460419878 @default.
- W3196444951 cites W2461719490 @default.
- W3196444951 cites W2471532249 @default.
- W3196444951 cites W2520345372 @default.
- W3196444951 cites W2591365136 @default.
- W3196444951 cites W2701340385 @default.
- W3196444951 cites W2765703872 @default.
- W3196444951 cites W2767778619 @default.
- W3196444951 cites W2777284228 @default.
- W3196444951 cites W2785339424 @default.
- W3196444951 cites W2794120693 @default.
- W3196444951 cites W2797657741 @default.