Matches in SemOpenAlex for { <https://semopenalex.org/work/W3196470003> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W3196470003 abstract "This paper uses Schwinger's representation of quantum systems of a finite number of degrees of freedom to formulate discrete path integral representations of the dynamics. The representation starts with an observable with a finite number of distinct eigenvalues. Using that observable Schwinger constructs complementary pairs of finite dimensional unitary operators that are finite dimensional analogs of the irreducible Weyl algebra. These can be decomposed into products of irreducible sub-algebras that reduce to q-bit gates for the case of $2^N$ degrees of freedom. In the limit of a large number of discrete degrees of freedom these representations can be used to model quantum systems with continuous degrees of freedom. This limit recovers the continuum Weyl algebra. Path integrals can be formulated in the discrete case. They have the advantage that the number of paths for a finite number of time slices is finite. In this work the path integral is interpreted as the expectation value of a potential functional with respect to a complex probability distribution on the space of paths. An application to scattering from a short-range potential is given. Multi-resolution wavelet bases are used exactly represent a local $phi^4(x)$ quantum field theory as a theory with an infinite number of discrete local modes. The discrete path integral is illustrated by computing time evolution when this theory is truncated to two coupled modes." @default.
- W3196470003 created "2021-09-13" @default.
- W3196470003 creator A5049963871 @default.
- W3196470003 date "2021-08-27" @default.
- W3196470003 modified "2023-09-27" @default.
- W3196470003 title "Path integrals and the discrete Weyl representation" @default.
- W3196470003 cites W1545464436 @default.
- W3196470003 cites W1592958377 @default.
- W3196470003 cites W1631356911 @default.
- W3196470003 cites W175341177 @default.
- W3196470003 cites W181307161 @default.
- W3196470003 cites W2062024414 @default.
- W3196470003 cites W640851321 @default.
- W3196470003 hasPublicationYear "2021" @default.
- W3196470003 type Work @default.
- W3196470003 sameAs 3196470003 @default.
- W3196470003 citedByCount "0" @default.
- W3196470003 crossrefType "posted-content" @default.
- W3196470003 hasAuthorship W3196470003A5049963871 @default.
- W3196470003 hasConcept C121332964 @default.
- W3196470003 hasConcept C134306372 @default.
- W3196470003 hasConcept C151201525 @default.
- W3196470003 hasConcept C154018700 @default.
- W3196470003 hasConcept C158693339 @default.
- W3196470003 hasConcept C162392398 @default.
- W3196470003 hasConcept C187915474 @default.
- W3196470003 hasConcept C202444582 @default.
- W3196470003 hasConcept C208081375 @default.
- W3196470003 hasConcept C2776122010 @default.
- W3196470003 hasConcept C32848918 @default.
- W3196470003 hasConcept C33923547 @default.
- W3196470003 hasConcept C62520636 @default.
- W3196470003 hasConcept C84114770 @default.
- W3196470003 hasConceptScore W3196470003C121332964 @default.
- W3196470003 hasConceptScore W3196470003C134306372 @default.
- W3196470003 hasConceptScore W3196470003C151201525 @default.
- W3196470003 hasConceptScore W3196470003C154018700 @default.
- W3196470003 hasConceptScore W3196470003C158693339 @default.
- W3196470003 hasConceptScore W3196470003C162392398 @default.
- W3196470003 hasConceptScore W3196470003C187915474 @default.
- W3196470003 hasConceptScore W3196470003C202444582 @default.
- W3196470003 hasConceptScore W3196470003C208081375 @default.
- W3196470003 hasConceptScore W3196470003C2776122010 @default.
- W3196470003 hasConceptScore W3196470003C32848918 @default.
- W3196470003 hasConceptScore W3196470003C33923547 @default.
- W3196470003 hasConceptScore W3196470003C62520636 @default.
- W3196470003 hasConceptScore W3196470003C84114770 @default.
- W3196470003 hasLocation W31964700031 @default.
- W3196470003 hasOpenAccess W3196470003 @default.
- W3196470003 hasPrimaryLocation W31964700031 @default.
- W3196470003 hasRelatedWork W1615679852 @default.
- W3196470003 hasRelatedWork W1964095209 @default.
- W3196470003 hasRelatedWork W1978374067 @default.
- W3196470003 hasRelatedWork W2020117854 @default.
- W3196470003 hasRelatedWork W2027481152 @default.
- W3196470003 hasRelatedWork W2041173276 @default.
- W3196470003 hasRelatedWork W2046538520 @default.
- W3196470003 hasRelatedWork W2070216545 @default.
- W3196470003 hasRelatedWork W2153283815 @default.
- W3196470003 hasRelatedWork W2475881114 @default.
- W3196470003 hasRelatedWork W2953090548 @default.
- W3196470003 hasRelatedWork W3004706193 @default.
- W3196470003 hasRelatedWork W3081463813 @default.
- W3196470003 hasRelatedWork W30958525 @default.
- W3196470003 hasRelatedWork W3100171570 @default.
- W3196470003 hasRelatedWork W3101399233 @default.
- W3196470003 hasRelatedWork W3175100551 @default.
- W3196470003 hasRelatedWork W3187483511 @default.
- W3196470003 hasRelatedWork W98652118 @default.
- W3196470003 hasRelatedWork W1634767450 @default.
- W3196470003 isParatext "false" @default.
- W3196470003 isRetracted "false" @default.
- W3196470003 magId "3196470003" @default.
- W3196470003 workType "article" @default.