Matches in SemOpenAlex for { <https://semopenalex.org/work/W3196535384> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W3196535384 endingPage "73" @default.
- W3196535384 startingPage "62" @default.
- W3196535384 abstract "Enzyme functional annotation has been a challenging problem in Bioinformatics for many years now, with Deep Learning recently appearing as an efficient alternative. Here, the use of recurrent neural networks, trained from sequential data and boosted by the use of attention mechanisms, is analysed. We assess the consequences of the choice of different parameters, as the length of the sequence and type of truncation, often not mentioned in previous studies. We also compare the use of different aminoacid encoding schemes to describe the protein, using one-hot, z-scales and Blosum62 encodings, as well as embedding layers. Lastly, we try to understand what the network is learning and inferring. Our results show that for enzyme classification, networks formed with Bidirectional recurrent layers and attention lead to better results. In addition, using simpler encoding schemes (e.g. one-hot) leads to higher performance. Using attention and embedding layers, we demonstrate that the model is capable of learning biological meaningful representations." @default.
- W3196535384 created "2021-09-13" @default.
- W3196535384 creator A5040524717 @default.
- W3196535384 creator A5084937593 @default.
- W3196535384 date "2021-08-28" @default.
- W3196535384 modified "2023-10-14" @default.
- W3196535384 title "Recurrent Deep Neural Networks for Enzyme Functional Annotation" @default.
- W3196535384 cites W2024213882 @default.
- W3196535384 cites W2100076566 @default.
- W3196535384 cites W2102461176 @default.
- W3196535384 cites W2143210482 @default.
- W3196535384 cites W2730472814 @default.
- W3196535384 cites W2739455021 @default.
- W3196535384 cites W2761495217 @default.
- W3196535384 cites W2766352633 @default.
- W3196535384 cites W2882018707 @default.
- W3196535384 cites W2892210937 @default.
- W3196535384 cites W2908663744 @default.
- W3196535384 cites W2943203634 @default.
- W3196535384 cites W2951092885 @default.
- W3196535384 cites W2951793362 @default.
- W3196535384 cites W2953321375 @default.
- W3196535384 cites W2986106760 @default.
- W3196535384 cites W2990594531 @default.
- W3196535384 cites W2998499403 @default.
- W3196535384 cites W2999481648 @default.
- W3196535384 cites W3016202688 @default.
- W3196535384 cites W3033814770 @default.
- W3196535384 cites W3037888463 @default.
- W3196535384 cites W3044288453 @default.
- W3196535384 cites W3082709982 @default.
- W3196535384 doi "https://doi.org/10.1007/978-3-030-86258-9_7" @default.
- W3196535384 hasPublicationYear "2021" @default.
- W3196535384 type Work @default.
- W3196535384 sameAs 3196535384 @default.
- W3196535384 citedByCount "3" @default.
- W3196535384 countsByYear W31965353842022 @default.
- W3196535384 countsByYear W31965353842023 @default.
- W3196535384 crossrefType "book-chapter" @default.
- W3196535384 hasAuthorship W3196535384A5040524717 @default.
- W3196535384 hasAuthorship W3196535384A5084937593 @default.
- W3196535384 hasConcept C106195933 @default.
- W3196535384 hasConcept C108583219 @default.
- W3196535384 hasConcept C119857082 @default.
- W3196535384 hasConcept C125411270 @default.
- W3196535384 hasConcept C147168706 @default.
- W3196535384 hasConcept C154945302 @default.
- W3196535384 hasConcept C2776321320 @default.
- W3196535384 hasConcept C2778112365 @default.
- W3196535384 hasConcept C41008148 @default.
- W3196535384 hasConcept C41608201 @default.
- W3196535384 hasConcept C50644808 @default.
- W3196535384 hasConcept C54355233 @default.
- W3196535384 hasConcept C86803240 @default.
- W3196535384 hasConceptScore W3196535384C106195933 @default.
- W3196535384 hasConceptScore W3196535384C108583219 @default.
- W3196535384 hasConceptScore W3196535384C119857082 @default.
- W3196535384 hasConceptScore W3196535384C125411270 @default.
- W3196535384 hasConceptScore W3196535384C147168706 @default.
- W3196535384 hasConceptScore W3196535384C154945302 @default.
- W3196535384 hasConceptScore W3196535384C2776321320 @default.
- W3196535384 hasConceptScore W3196535384C2778112365 @default.
- W3196535384 hasConceptScore W3196535384C41008148 @default.
- W3196535384 hasConceptScore W3196535384C41608201 @default.
- W3196535384 hasConceptScore W3196535384C50644808 @default.
- W3196535384 hasConceptScore W3196535384C54355233 @default.
- W3196535384 hasConceptScore W3196535384C86803240 @default.
- W3196535384 hasLocation W31965353841 @default.
- W3196535384 hasOpenAccess W3196535384 @default.
- W3196535384 hasPrimaryLocation W31965353841 @default.
- W3196535384 hasRelatedWork W2795261237 @default.
- W3196535384 hasRelatedWork W3014300295 @default.
- W3196535384 hasRelatedWork W3164822677 @default.
- W3196535384 hasRelatedWork W4223943233 @default.
- W3196535384 hasRelatedWork W4225161397 @default.
- W3196535384 hasRelatedWork W4312200629 @default.
- W3196535384 hasRelatedWork W4360585206 @default.
- W3196535384 hasRelatedWork W4364306694 @default.
- W3196535384 hasRelatedWork W4380075502 @default.
- W3196535384 hasRelatedWork W4380086463 @default.
- W3196535384 isParatext "false" @default.
- W3196535384 isRetracted "false" @default.
- W3196535384 magId "3196535384" @default.
- W3196535384 workType "book-chapter" @default.