Matches in SemOpenAlex for { <https://semopenalex.org/work/W3196543291> ?p ?o ?g. }
Showing items 1 to 55 of
55
with 100 items per page.
- W3196543291 endingPage "799" @default.
- W3196543291 startingPage "795" @default.
- W3196543291 abstract "Let $H=(V,E)$ be a graph with $r$ vertices and $s$ edges. A graph $G$ is said to be an analytic odd mean labeling if there exist a bijective function $h:V(H)rightarrow { 0,1,3,5,...,2s-1} $ with an induce edge labeling $h^*:E(H) rightarrow N$ such that for each edge $xy$ with $h(x)<h(y)$,[h^*(xy)=begin{cases}lceil {frac{h(y)^2-(h(x)+1)^2}{2}}rceil ; &text{if $h(x)neq 0$}lceil {frac{h(y)^2} {2}} rceil ; &text{if $h(x)=0 $}end{cases}]A graph that admits an analytic odd mean labeling is called an analytic odd mean graph. In this paper, we prove that triangular book $B(3,c)$, double triangular book $DB(3,c)$, triangular snake $S_{3,c}$, double triangular snake $D(T_{c})$, butterfly $BF(c,d)$, drum $D_{c}, c geq 3$, $C_{c} bigodot P_{c}$, $F_{c} bigodot K_{1,d}, 1 leq d leq 2c-1$, $W_{c} bigodot K_{1,d}, 1leq d leq 2c$, $P_{c}^2 bigodot K_{1,d}, c geq 3$ and $1leq d leq 2c-3$ are analytic odd mean graphs." @default.
- W3196543291 created "2021-09-13" @default.
- W3196543291 creator A5002266027 @default.
- W3196543291 creator A5084548521 @default.
- W3196543291 date "2021-08-22" @default.
- W3196543291 modified "2023-09-24" @default.
- W3196543291 title "An analytic odd mean labeling of some new results of graphs" @default.
- W3196543291 hasPublicationYear "2021" @default.
- W3196543291 type Work @default.
- W3196543291 sameAs 3196543291 @default.
- W3196543291 citedByCount "0" @default.
- W3196543291 crossrefType "journal-article" @default.
- W3196543291 hasAuthorship W3196543291A5002266027 @default.
- W3196543291 hasAuthorship W3196543291A5084548521 @default.
- W3196543291 hasConcept C114614502 @default.
- W3196543291 hasConcept C121332964 @default.
- W3196543291 hasConcept C132525143 @default.
- W3196543291 hasConcept C24424167 @default.
- W3196543291 hasConcept C33923547 @default.
- W3196543291 hasConceptScore W3196543291C114614502 @default.
- W3196543291 hasConceptScore W3196543291C121332964 @default.
- W3196543291 hasConceptScore W3196543291C132525143 @default.
- W3196543291 hasConceptScore W3196543291C24424167 @default.
- W3196543291 hasConceptScore W3196543291C33923547 @default.
- W3196543291 hasIssue "3" @default.
- W3196543291 hasLocation W31965432911 @default.
- W3196543291 hasOpenAccess W3196543291 @default.
- W3196543291 hasPrimaryLocation W31965432911 @default.
- W3196543291 hasRelatedWork W2115290305 @default.
- W3196543291 hasRelatedWork W2205584677 @default.
- W3196543291 hasRelatedWork W2518307406 @default.
- W3196543291 hasRelatedWork W2593467195 @default.
- W3196543291 hasRelatedWork W2596200812 @default.
- W3196543291 hasRelatedWork W2896685742 @default.
- W3196543291 hasRelatedWork W2943841550 @default.
- W3196543291 hasRelatedWork W2949149420 @default.
- W3196543291 hasRelatedWork W2950169350 @default.
- W3196543291 hasRelatedWork W2950459627 @default.
- W3196543291 hasRelatedWork W2951487223 @default.
- W3196543291 hasRelatedWork W2952763673 @default.
- W3196543291 hasRelatedWork W2952832061 @default.
- W3196543291 hasRelatedWork W3037198952 @default.
- W3196543291 hasRelatedWork W3198620982 @default.
- W3196543291 hasRelatedWork W3199315121 @default.
- W3196543291 hasRelatedWork W855319406 @default.
- W3196543291 hasRelatedWork W983944739 @default.
- W3196543291 hasRelatedWork W2183821130 @default.
- W3196543291 hasRelatedWork W2759488889 @default.
- W3196543291 hasVolume "28" @default.
- W3196543291 isParatext "false" @default.
- W3196543291 isRetracted "false" @default.
- W3196543291 magId "3196543291" @default.
- W3196543291 workType "article" @default.