Matches in SemOpenAlex for { <https://semopenalex.org/work/W3196584685> ?p ?o ?g. }
- W3196584685 endingPage "5830" @default.
- W3196584685 startingPage "5830" @default.
- W3196584685 abstract "The rapid growth in the industrial sector has required the development of more productive and reliable machinery, and therefore, leads to complex systems. In this regard, the automatic detection of unknown events in machinery represents a greater challenge, since uncharacterized catastrophic faults can occur. However, the existing methods for anomaly detection present limitations when dealing with highly complex industrial systems. For that purpose, a novel fault diagnosis methodology is developed to face the anomaly detection. An unsupervised anomaly detection framework named deep-autoencoder-compact-clustering one-class support-vector machine (DAECC-OC-SVM) is presented, which aims to incorporate the advantages of automatically learnt representation by deep neural network to improved anomaly detection performance. The method combines the training of a deep-autoencoder with clustering compact model and a one-class support-vector-machine function-based outlier detection method. The addressed methodology is applied on a public rolling bearing faults experimental test bench and on multi-fault experimental test bench. The results show that the proposed methodology it is able to accurately to detect unknown defects, outperforming other state-of-the-art methods." @default.
- W3196584685 created "2021-09-13" @default.
- W3196584685 creator A5038708149 @default.
- W3196584685 creator A5045800045 @default.
- W3196584685 creator A5046490122 @default.
- W3196584685 creator A5078539665 @default.
- W3196584685 creator A5082531315 @default.
- W3196584685 date "2021-08-30" @default.
- W3196584685 modified "2023-10-15" @default.
- W3196584685 title "Deep-Compact-Clustering Based Anomaly Detection Applied to Electromechanical Industrial Systems" @default.
- W3196584685 cites W1965555277 @default.
- W3196584685 cites W2004039783 @default.
- W3196584685 cites W2029952239 @default.
- W3196584685 cites W2038869416 @default.
- W3196584685 cites W2115627867 @default.
- W3196584685 cites W2122646361 @default.
- W3196584685 cites W2163922914 @default.
- W3196584685 cites W2219903032 @default.
- W3196584685 cites W243674440 @default.
- W3196584685 cites W2540481276 @default.
- W3196584685 cites W2556013418 @default.
- W3196584685 cites W2559999082 @default.
- W3196584685 cites W2603304445 @default.
- W3196584685 cites W2612554669 @default.
- W3196584685 cites W2628062541 @default.
- W3196584685 cites W2735326783 @default.
- W3196584685 cites W2739846485 @default.
- W3196584685 cites W2761148314 @default.
- W3196584685 cites W2766761849 @default.
- W3196584685 cites W2780476542 @default.
- W3196584685 cites W2792098970 @default.
- W3196584685 cites W2794081072 @default.
- W3196584685 cites W2801396593 @default.
- W3196584685 cites W2808496542 @default.
- W3196584685 cites W2810292802 @default.
- W3196584685 cites W2891948273 @default.
- W3196584685 cites W2897197428 @default.
- W3196584685 cites W2899280016 @default.
- W3196584685 cites W2912859364 @default.
- W3196584685 cites W2915337192 @default.
- W3196584685 cites W2953775935 @default.
- W3196584685 cites W2994835796 @default.
- W3196584685 cites W2997417149 @default.
- W3196584685 cites W2998506103 @default.
- W3196584685 cites W3007050866 @default.
- W3196584685 cites W3021827168 @default.
- W3196584685 cites W3022742213 @default.
- W3196584685 cites W3024202862 @default.
- W3196584685 cites W3043401064 @default.
- W3196584685 cites W3110045905 @default.
- W3196584685 cites W3122985179 @default.
- W3196584685 cites W3133540327 @default.
- W3196584685 cites W3138513656 @default.
- W3196584685 cites W3167126097 @default.
- W3196584685 cites W3170591781 @default.
- W3196584685 cites W3193771350 @default.
- W3196584685 doi "https://doi.org/10.3390/s21175830" @default.
- W3196584685 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8433707" @default.
- W3196584685 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34502724" @default.
- W3196584685 hasPublicationYear "2021" @default.
- W3196584685 type Work @default.
- W3196584685 sameAs 3196584685 @default.
- W3196584685 citedByCount "7" @default.
- W3196584685 countsByYear W31965846852021 @default.
- W3196584685 countsByYear W31965846852022 @default.
- W3196584685 countsByYear W31965846852023 @default.
- W3196584685 crossrefType "journal-article" @default.
- W3196584685 hasAuthorship W3196584685A5038708149 @default.
- W3196584685 hasAuthorship W3196584685A5045800045 @default.
- W3196584685 hasAuthorship W3196584685A5046490122 @default.
- W3196584685 hasAuthorship W3196584685A5078539665 @default.
- W3196584685 hasAuthorship W3196584685A5082531315 @default.
- W3196584685 hasBestOaLocation W31965846851 @default.
- W3196584685 hasConcept C101738243 @default.
- W3196584685 hasConcept C119857082 @default.
- W3196584685 hasConcept C121332964 @default.
- W3196584685 hasConcept C12267149 @default.
- W3196584685 hasConcept C124101348 @default.
- W3196584685 hasConcept C127313418 @default.
- W3196584685 hasConcept C12997251 @default.
- W3196584685 hasConcept C152745839 @default.
- W3196584685 hasConcept C153180895 @default.
- W3196584685 hasConcept C154945302 @default.
- W3196584685 hasConcept C165205528 @default.
- W3196584685 hasConcept C172707124 @default.
- W3196584685 hasConcept C175551986 @default.
- W3196584685 hasConcept C17744445 @default.
- W3196584685 hasConcept C199539241 @default.
- W3196584685 hasConcept C26873012 @default.
- W3196584685 hasConcept C2776359362 @default.
- W3196584685 hasConcept C41008148 @default.
- W3196584685 hasConcept C50644808 @default.
- W3196584685 hasConcept C73555534 @default.
- W3196584685 hasConcept C739882 @default.
- W3196584685 hasConcept C79337645 @default.
- W3196584685 hasConcept C94625758 @default.
- W3196584685 hasConceptScore W3196584685C101738243 @default.
- W3196584685 hasConceptScore W3196584685C119857082 @default.