Matches in SemOpenAlex for { <https://semopenalex.org/work/W3196622003> ?p ?o ?g. }
- W3196622003 endingPage "3617" @default.
- W3196622003 startingPage "3604" @default.
- W3196622003 abstract "ConspectusAlthough macrocyclic peptides bearing exotic building blocks have proven their utility as pharmaceuticals, the sources of macrocyclic peptide drugs have been largely limited to mimetics of native peptides or natural product peptides. However, the recent emergence of technologies for discovering de novo bioactive peptides has led to their reconceptualization as a promising therapeutic modality. For the construction and screening of libraries of such macrocyclic peptides, our group has devised a platform to conduct affinity-based selection of massive libraries (>1012 unique sequences) of in vitro expressed macrocyclic peptides, which is referred to as the random nonstandard peptides integrated discovery (RaPID) system. The RaPID system integrates genetic code reprogramming using the FIT (flexible in vitro translation) system, which is largely facilitated by flexizymes (flexible tRNA-aminoacylating ribozymes), with mRNA display technology.We have demonstrated that the RaPID system enables rapid discovery of various de novo pseudo-natural peptide ligands for protein targets of interest. Many examples discussed in this Account prove that thioether-closed macrocyclic peptides (teMPs) obtained by the RaPID system generally exhibit remarkably high affinity and specificity, thereby potently inhibiting or activating a specific function(s) of the target. Moreover, such teMPs are used for a wide range of biochemical applications, for example, as crystallization chaperones for intractable transmembrane proteins and for in vivo recognition of specific cell types. Furthermore, recent studies demonstrate that some teMPs exhibit pharmacological activities in animal models and that even intracellular proteins can be inhibited by teMPs, illustrating the potential of this class of peptides as drug leads.Besides the ring-closing thioether linkage in the teMPs, genetic code reprogramming by the FIT system allows for incorporation of a variety of other exotic building blocks. For instance, diverse nonproteinogenic amino acids, hydroxy acids (ester linkage), amino carbothioic acid (thioamide linkage), and abiotic foldamer units have been successfully incorporated into ribosomally synthesized peptides. Despite such enormous successes in the conventional FIT system, multiple or consecutive incorporation of highly exotic amino acids, such as d- and β-amino acids, is yet challenging, and particularly the synthesis of peptides bearing non-carbonyl backbone structures remains a demanding task. To upgrade the RaPID system to the next generation, we have engaged in intensive manipulation of the FIT system to expand the structural diversity of peptides accessible by our in vitro biosynthesis strategy. Semilogical engineering of tRNA body sequences led to a new suppressor tRNA (tRNAPro1E2) capable of effectively recruiting translation factors, particularly EF-Tu and EF-P. The use of tRNAPro1E2 in the FIT system allows for not only single but also consecutive and multiple elongation of exotic amino acids, such as d-, β-, and γ-amino acids as well as aminobenzoic acids. Moreover, the integration of the FIT system with various chemical or enzymatic posttranslational modifications enables us to expand the range of accessible backbone structures to non-carbonyl moieties prominent in natural products and peptidomimetics. In such systems, FIT-expressed peptides undergo multistep backbone conversions in a one-pot manner to yield designer peptides composed of modified backbones such as azolines, azoles, and ring-closing pyridines. Our current research endeavors focus on applying such in vitro biosynthesis systems for the discovery of bioactive de novo pseudo-natural products." @default.
- W3196622003 created "2021-09-13" @default.
- W3196622003 creator A5017224243 @default.
- W3196622003 creator A5058688721 @default.
- W3196622003 date "2021-09-10" @default.
- W3196622003 modified "2023-10-18" @default.
- W3196622003 title "The RaPID Platform for the Discovery of Pseudo-Natural Macrocyclic Peptides" @default.
- W3196622003 cites W124964997 @default.
- W3196622003 cites W1876579582 @default.
- W3196622003 cites W1976954198 @default.
- W3196622003 cites W1978667812 @default.
- W3196622003 cites W1991959327 @default.
- W3196622003 cites W1993111592 @default.
- W3196622003 cites W2000215070 @default.
- W3196622003 cites W2009181811 @default.
- W3196622003 cites W2012340394 @default.
- W3196622003 cites W2015887575 @default.
- W3196622003 cites W2022813351 @default.
- W3196622003 cites W2023018411 @default.
- W3196622003 cites W2028493269 @default.
- W3196622003 cites W2042511685 @default.
- W3196622003 cites W2043682310 @default.
- W3196622003 cites W2045391881 @default.
- W3196622003 cites W2052195617 @default.
- W3196622003 cites W2055760720 @default.
- W3196622003 cites W2061854627 @default.
- W3196622003 cites W2062287021 @default.
- W3196622003 cites W2067489282 @default.
- W3196622003 cites W2067800798 @default.
- W3196622003 cites W2077471730 @default.
- W3196622003 cites W2079838527 @default.
- W3196622003 cites W2079962210 @default.
- W3196622003 cites W2087181770 @default.
- W3196622003 cites W2099965964 @default.
- W3196622003 cites W2104735232 @default.
- W3196622003 cites W2113450820 @default.
- W3196622003 cites W2131192876 @default.
- W3196622003 cites W2140405078 @default.
- W3196622003 cites W2149850548 @default.
- W3196622003 cites W2158527336 @default.
- W3196622003 cites W2162481919 @default.
- W3196622003 cites W2162854463 @default.
- W3196622003 cites W2257342027 @default.
- W3196622003 cites W2272368254 @default.
- W3196622003 cites W2275655681 @default.
- W3196622003 cites W2309245899 @default.
- W3196622003 cites W2318033274 @default.
- W3196622003 cites W2334450392 @default.
- W3196622003 cites W2395410212 @default.
- W3196622003 cites W2464060564 @default.
- W3196622003 cites W2512284627 @default.
- W3196622003 cites W2544215763 @default.
- W3196622003 cites W2561421588 @default.
- W3196622003 cites W2586525814 @default.
- W3196622003 cites W2592629923 @default.
- W3196622003 cites W2604618525 @default.
- W3196622003 cites W2604831391 @default.
- W3196622003 cites W2742532304 @default.
- W3196622003 cites W2770708148 @default.
- W3196622003 cites W2782995788 @default.
- W3196622003 cites W2788865049 @default.
- W3196622003 cites W2792491353 @default.
- W3196622003 cites W2795135779 @default.
- W3196622003 cites W2799508580 @default.
- W3196622003 cites W2799630004 @default.
- W3196622003 cites W2810643020 @default.
- W3196622003 cites W2882971792 @default.
- W3196622003 cites W2891469382 @default.
- W3196622003 cites W2946212280 @default.
- W3196622003 cites W2949015502 @default.
- W3196622003 cites W2955378317 @default.
- W3196622003 cites W2973934298 @default.
- W3196622003 cites W2980568487 @default.
- W3196622003 cites W2984786470 @default.
- W3196622003 cites W2991277410 @default.
- W3196622003 cites W2996169908 @default.
- W3196622003 cites W2998121288 @default.
- W3196622003 cites W3005477248 @default.
- W3196622003 cites W3006737179 @default.
- W3196622003 cites W3009230670 @default.
- W3196622003 cites W3021391052 @default.
- W3196622003 cites W3039138758 @default.
- W3196622003 cites W3041428333 @default.
- W3196622003 cites W3042266383 @default.
- W3196622003 cites W3080645393 @default.
- W3196622003 cites W3081080495 @default.
- W3196622003 cites W3087180082 @default.
- W3196622003 cites W3087348949 @default.
- W3196622003 cites W3100492067 @default.
- W3196622003 cites W3110390608 @default.
- W3196622003 cites W3111524336 @default.
- W3196622003 cites W3122097161 @default.
- W3196622003 cites W3159998624 @default.
- W3196622003 cites W3162651106 @default.
- W3196622003 cites W3182820177 @default.
- W3196622003 cites W3187465485 @default.
- W3196622003 doi "https://doi.org/10.1021/acs.accounts.1c00391" @default.
- W3196622003 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34505781" @default.