Matches in SemOpenAlex for { <https://semopenalex.org/work/W3196625721> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W3196625721 endingPage "448" @default.
- W3196625721 startingPage "432" @default.
- W3196625721 abstract "This paper proposes a fully automated approach to map and assess roadside clearance parameters using mobile Light Detection and Ranging (lidar) data on rural highways. Compared with traditional manual surveying methods, lidar data could provide a more efficient and cost-effective source to extract roadside information. This study proposes a novel voxel-based raycasting approach focused primarily on automating roadside mapping and assessment. First, the scanning vehicle trajectory is extracted. Pavement surface points are then detected, and a method is proposed to extract pavement edge trajectories. Once pavement edges are extracted, guardrails were identified using a conical frustum emitted from the edge trajectory points. Target points and flexion points are then generated and located on the roadside, and a voxel-based raycasting approach is used to search for roadside obstacles and query their locations. Finally, roadside slopes and embankment heights were mapped at specific intervals, and roadside design guidelines and requirements were automatically checked against the mapping results. Noncompliant locations with substandard conditions were automatically queried. The method was tested on four highway segments in Alberta, Canada. The accuracy of the edge detection reached up to 98.5%. Furthermore, the method proved to be accurate in object detection, being able to detect all obstructions on the roadside in each tested segment. The proposed method can help transportation authorities automatically map and inventory roadside clearance parameters. Moreover, the safety performance of existing road infrastructure can be studied using collected information and crash data to support decision making on road maintenance and upgrades." @default.
- W3196625721 created "2021-09-13" @default.
- W3196625721 creator A5003740606 @default.
- W3196625721 creator A5077960434 @default.
- W3196625721 creator A5083054011 @default.
- W3196625721 date "2021-08-31" @default.
- W3196625721 modified "2023-10-01" @default.
- W3196625721 title "Automated Object Detection, Mapping, and Assessment of Roadside Clear Zones Using Lidar Data" @default.
- W3196625721 cites W1965174026 @default.
- W3196625721 cites W1967405926 @default.
- W3196625721 cites W1986570379 @default.
- W3196625721 cites W2001401232 @default.
- W3196625721 cites W2045388733 @default.
- W3196625721 cites W2111778270 @default.
- W3196625721 cites W2433857202 @default.
- W3196625721 cites W2467615243 @default.
- W3196625721 cites W2530953581 @default.
- W3196625721 cites W2616896738 @default.
- W3196625721 cites W2777353081 @default.
- W3196625721 cites W2788956442 @default.
- W3196625721 cites W2896338957 @default.
- W3196625721 cites W2914009833 @default.
- W3196625721 cites W2918041452 @default.
- W3196625721 cites W2934511550 @default.
- W3196625721 cites W2964979769 @default.
- W3196625721 cites W2991100258 @default.
- W3196625721 cites W3023363346 @default.
- W3196625721 cites W3026745828 @default.
- W3196625721 cites W3126981788 @default.
- W3196625721 cites W3129091209 @default.
- W3196625721 cites W3133071534 @default.
- W3196625721 cites W3157421405 @default.
- W3196625721 cites W3184775221 @default.
- W3196625721 cites W3196202959 @default.
- W3196625721 cites W3206673580 @default.
- W3196625721 doi "https://doi.org/10.1177/03611981211029934" @default.
- W3196625721 hasPublicationYear "2021" @default.
- W3196625721 type Work @default.
- W3196625721 sameAs 3196625721 @default.
- W3196625721 citedByCount "7" @default.
- W3196625721 countsByYear W31966257212021 @default.
- W3196625721 countsByYear W31966257212022 @default.
- W3196625721 countsByYear W31966257212023 @default.
- W3196625721 crossrefType "journal-article" @default.
- W3196625721 hasAuthorship W3196625721A5003740606 @default.
- W3196625721 hasAuthorship W3196625721A5077960434 @default.
- W3196625721 hasAuthorship W3196625721A5083054011 @default.
- W3196625721 hasBestOaLocation W31966257211 @default.
- W3196625721 hasConcept C121332964 @default.
- W3196625721 hasConcept C127313418 @default.
- W3196625721 hasConcept C127413603 @default.
- W3196625721 hasConcept C1276947 @default.
- W3196625721 hasConcept C13662910 @default.
- W3196625721 hasConcept C162307627 @default.
- W3196625721 hasConcept C22212356 @default.
- W3196625721 hasConcept C31972630 @default.
- W3196625721 hasConcept C41008148 @default.
- W3196625721 hasConcept C51399673 @default.
- W3196625721 hasConcept C62649853 @default.
- W3196625721 hasConcept C64543145 @default.
- W3196625721 hasConcept C78519656 @default.
- W3196625721 hasConcept C97402662 @default.
- W3196625721 hasConceptScore W3196625721C121332964 @default.
- W3196625721 hasConceptScore W3196625721C127313418 @default.
- W3196625721 hasConceptScore W3196625721C127413603 @default.
- W3196625721 hasConceptScore W3196625721C1276947 @default.
- W3196625721 hasConceptScore W3196625721C13662910 @default.
- W3196625721 hasConceptScore W3196625721C162307627 @default.
- W3196625721 hasConceptScore W3196625721C22212356 @default.
- W3196625721 hasConceptScore W3196625721C31972630 @default.
- W3196625721 hasConceptScore W3196625721C41008148 @default.
- W3196625721 hasConceptScore W3196625721C51399673 @default.
- W3196625721 hasConceptScore W3196625721C62649853 @default.
- W3196625721 hasConceptScore W3196625721C64543145 @default.
- W3196625721 hasConceptScore W3196625721C78519656 @default.
- W3196625721 hasConceptScore W3196625721C97402662 @default.
- W3196625721 hasFunder F4320325651 @default.
- W3196625721 hasFunder F4320334593 @default.
- W3196625721 hasIssue "12" @default.
- W3196625721 hasLocation W31966257211 @default.
- W3196625721 hasOpenAccess W3196625721 @default.
- W3196625721 hasPrimaryLocation W31966257211 @default.
- W3196625721 hasRelatedWork W1964041166 @default.
- W3196625721 hasRelatedWork W196913356 @default.
- W3196625721 hasRelatedWork W1994648051 @default.
- W3196625721 hasRelatedWork W2012196540 @default.
- W3196625721 hasRelatedWork W2094658701 @default.
- W3196625721 hasRelatedWork W2121524756 @default.
- W3196625721 hasRelatedWork W2140032575 @default.
- W3196625721 hasRelatedWork W2351984678 @default.
- W3196625721 hasRelatedWork W2487834875 @default.
- W3196625721 hasRelatedWork W3011451421 @default.
- W3196625721 hasVolume "2675" @default.
- W3196625721 isParatext "false" @default.
- W3196625721 isRetracted "false" @default.
- W3196625721 magId "3196625721" @default.
- W3196625721 workType "article" @default.