Matches in SemOpenAlex for { <https://semopenalex.org/work/W3196670440> ?p ?o ?g. }
- W3196670440 abstract "Aerial platforms and, more precisely, Unmanned Aerial Vehicles (UAVs) or drones augmented with ubiquitous computing, processing, and wireless communication technologies are expected to play an important role in next-generation cellular networks. The flexibility and controllable mobility of UAVs render them suitable to be part of access. Nonetheless, combined terrestrial and UAV communication improving network coverage and Quality of Service by leveraging line-of-sight communication as well as minimizing the delay and age-of-information for UAV-to-ground communication. Despite its numerous advantages, the deployment of UAVs faces different challenges with respect to wireless networks, ranging from radio resource management to UAVs’ trajectory under energy limitation constraint and minimal knowledge of the environment. To this end, this dissertation aims to address the challenges in the efficient deployment of UAVs in future networks under various performance metrics. The key goal of this dissertation is to provide the analytical foundations for deployment, learning, in-depth analysis, and optimization of UAV-assisted wireless communication networks. Towards achieving this goal, this dissertation makes significant contributions to several areas of UAV-assisted wireless communication networks within the contexts of static environments as well as high mobility environments. For the deployment of UAVs in static environments such as Internet of Things (IoT) wireless networks, various tools such as optimization theory and machine learning frameworks are employed to enable UAV trajectory design under different scenarios and performance metrics. Results demonstrate the effectiveness of the proposed designs. In particular, UAVs adapt their mobility and altitude to enable reliable and energy-efficient communication, to maximize service for IoT applications, and to maintain the freshness of information. For the deployment of UAVs in high mobility environments such as vehicular networks, unique design challenges are considered and carefully handled to guarantee the effective performance of the UAV. Particularly, the high mobility of the vehicles leads to distinct network conditions and changes the network topology. The challenge here is that designing an efficient deployment of UAVs while considering the complex and dynamic network conditions is not a trivial task. This challenge was addressed through comprehensive studies that led to effective, robust, and high-performance solutions. Different performance metrics such as coverage, age of information, throughput, and Quality of Service were evaluated and compared with other approaches. Results shed light on the trade-offs in the vehicular network such as throughput-latency when exploiting UAV mobility for service. The findings in this dissertation highlight key guidelines for the effective design of UAV-assisted wireless communication networks. More insights on the efficient deployment of UAVs in static and high mobility environments are provided in order to assist and enhance communication in future networks while considering the unique features of UAVs such as their flight time, mobility, energy budget, and altitude." @default.
- W3196670440 created "2021-09-13" @default.
- W3196670440 creator A5010369064 @default.
- W3196670440 date "2020-12-15" @default.
- W3196670440 modified "2023-09-26" @default.
- W3196670440 title "Unmanned Aerial Vehicles for 5G and Beyond: Optimization and Deep Learning" @default.
- W3196670440 cites W121557243 @default.
- W3196670440 cites W1757796397 @default.
- W3196670440 cites W2005477504 @default.
- W3196670440 cites W2031834036 @default.
- W3196670440 cites W2034614500 @default.
- W3196670440 cites W2036586979 @default.
- W3196670440 cites W2062457326 @default.
- W3196670440 cites W2103048107 @default.
- W3196670440 cites W2108498890 @default.
- W3196670440 cites W2117740102 @default.
- W3196670440 cites W2121863487 @default.
- W3196670440 cites W2125896931 @default.
- W3196670440 cites W2132987094 @default.
- W3196670440 cites W2165039866 @default.
- W3196670440 cites W2170880416 @default.
- W3196670440 cites W2173248099 @default.
- W3196670440 cites W2289204537 @default.
- W3196670440 cites W2392398774 @default.
- W3196670440 cites W2460736120 @default.
- W3196670440 cites W2523219060 @default.
- W3196670440 cites W2558431499 @default.
- W3196670440 cites W2602528845 @default.
- W3196670440 cites W2614163367 @default.
- W3196670440 cites W2618849663 @default.
- W3196670440 cites W2621764913 @default.
- W3196670440 cites W2625133885 @default.
- W3196670440 cites W2736601468 @default.
- W3196670440 cites W2740005962 @default.
- W3196670440 cites W2754517384 @default.
- W3196670440 cites W2766752620 @default.
- W3196670440 cites W2768771208 @default.
- W3196670440 cites W2783184536 @default.
- W3196670440 cites W2783189583 @default.
- W3196670440 cites W2791487310 @default.
- W3196670440 cites W2802602104 @default.
- W3196670440 cites W2886509985 @default.
- W3196670440 cites W2895691654 @default.
- W3196670440 cites W2898733141 @default.
- W3196670440 cites W2925554975 @default.
- W3196670440 cites W2945874132 @default.
- W3196670440 cites W2952736579 @default.
- W3196670440 cites W2959640473 @default.
- W3196670440 cites W2961899294 @default.
- W3196670440 cites W2962141687 @default.
- W3196670440 cites W2962262066 @default.
- W3196670440 cites W2962691117 @default.
- W3196670440 cites W2963061782 @default.
- W3196670440 cites W2963085502 @default.
- W3196670440 cites W2963183067 @default.
- W3196670440 cites W2963285294 @default.
- W3196670440 cites W2963542767 @default.
- W3196670440 cites W2963580658 @default.
- W3196670440 cites W2964018918 @default.
- W3196670440 cites W2964023906 @default.
- W3196670440 cites W2964093908 @default.
- W3196670440 cites W2964182681 @default.
- W3196670440 cites W2964209416 @default.
- W3196670440 cites W2964310887 @default.
- W3196670440 cites W2969519626 @default.
- W3196670440 cites W2970920473 @default.
- W3196670440 cites W2973697444 @default.
- W3196670440 cites W2982537683 @default.
- W3196670440 cites W2996110936 @default.
- W3196670440 cites W2999877931 @default.
- W3196670440 cites W3003493416 @default.
- W3196670440 cites W3007091509 @default.
- W3196670440 cites W3012319098 @default.
- W3196670440 cites W3022601977 @default.
- W3196670440 cites W3038104762 @default.
- W3196670440 cites W3038418740 @default.
- W3196670440 cites W3046016465 @default.
- W3196670440 cites W3046988891 @default.
- W3196670440 cites W3048386157 @default.
- W3196670440 cites W3059813204 @default.
- W3196670440 cites W3084578038 @default.
- W3196670440 cites W3101996971 @default.
- W3196670440 cites W3106530718 @default.
- W3196670440 cites W3111189508 @default.
- W3196670440 cites W3133999295 @default.
- W3196670440 cites W1955773994 @default.
- W3196670440 hasPublicationYear "2020" @default.
- W3196670440 type Work @default.
- W3196670440 sameAs 3196670440 @default.
- W3196670440 citedByCount "0" @default.
- W3196670440 crossrefType "dissertation" @default.
- W3196670440 hasAuthorship W3196670440A5010369064 @default.
- W3196670440 hasConcept C105339364 @default.
- W3196670440 hasConcept C105795698 @default.
- W3196670440 hasConcept C108037233 @default.
- W3196670440 hasConcept C111919701 @default.
- W3196670440 hasConcept C120314980 @default.
- W3196670440 hasConcept C2780598303 @default.
- W3196670440 hasConcept C31258907 @default.
- W3196670440 hasConcept C33923547 @default.