Matches in SemOpenAlex for { <https://semopenalex.org/work/W3196680166> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W3196680166 startingPage "18" @default.
- W3196680166 abstract "We propose a framework to study the effect of local recovery requirements of codeword symbols on the dimension of linear codes, based on a combinatorial proxy that we call visible rank. The locality constraints of a linear code are stipulated by a matrix H of ⋆’s and 0’s (which we call a stencil), whose rows correspond to the local parity checks (with the ⋆’s indicating the support of the check). The visible rank of H is the largest r for which there is a r × r submatrix in H with a unique generalized diagonal of ⋆’s. The visible rank yields a field-independent combinatorial lower bound on the rank of H and thus the co-dimension of the code. We point out connections of the visible rank to other notions in the literature such as unique restricted graph matchings, matroids, spanoids, and min-rank. In particular, we prove a rank-nullity type theorem relating visible rank to the rank of an associated construct called symmetric spanoid, which was introduced by Dvir, Gopi, Gu, and Wigderson [Zeev Dvir et al., 2020]. Using this connection and a construction of appropriate stencils, we answer a question posed in [Zeev Dvir et al., 2020] and demonstrate that symmetric spanoid rank cannot improve the currently best known O(n^{(q-2)/(q-1)}) upper bound on the dimension of q-query locally correctable codes (LCCs) of length n. This also pins down the efficacy of visible rank as a proxy for the dimension of LCCs. We also study the t-Disjoint Repair Group Property (t-DRGP) of codes where each codeword symbol must belong to t disjoint check equations. It is known that linear codes with 2-DRGP must have co-dimension Ω(√n) (which is matched by a simple product code construction). We show that there are stencils corresponding to 2-DRGP with visible rank as small as O(log n). However, we show the second tensor of any 2-DRGP stencil has visible rank Ω(n), thus recovering the Ω(√n) lower bound for 2-DRGP. For q-LCC, however, the k'th tensor power for k ⩽ n^{o(1)} is unable to improve the O(n^{(q-2)/(q-1)}) upper bound on the dimension of q-LCCs by a polynomial factor.Inspired by this and as a notion of intrinsic interest, we define the notion of visible capacity of a stencil as the limiting visible rank of high tensor powers, analogous to Shannon capacity, and pose the question whether there can be large gaps between visible capacity and algebraic rank." @default.
- W3196680166 created "2021-09-13" @default.
- W3196680166 creator A5030924421 @default.
- W3196680166 creator A5068388812 @default.
- W3196680166 date "2021-08-28" @default.
- W3196680166 modified "2023-09-27" @default.
- W3196680166 title "Visible Rank and Codes with Locality" @default.
- W3196680166 doi "https://doi.org/10.4230/lipics.approx/random.2021.57" @default.
- W3196680166 hasPublicationYear "2021" @default.
- W3196680166 type Work @default.
- W3196680166 sameAs 3196680166 @default.
- W3196680166 citedByCount "0" @default.
- W3196680166 crossrefType "proceedings-article" @default.
- W3196680166 hasAuthorship W3196680166A5030924421 @default.
- W3196680166 hasAuthorship W3196680166A5068388812 @default.
- W3196680166 hasConcept C11413529 @default.
- W3196680166 hasConcept C114614502 @default.
- W3196680166 hasConcept C118615104 @default.
- W3196680166 hasConcept C134306372 @default.
- W3196680166 hasConcept C138885662 @default.
- W3196680166 hasConcept C153207627 @default.
- W3196680166 hasConcept C164226766 @default.
- W3196680166 hasConcept C2779808786 @default.
- W3196680166 hasConcept C33676613 @default.
- W3196680166 hasConcept C33923547 @default.
- W3196680166 hasConcept C41895202 @default.
- W3196680166 hasConcept C57273362 @default.
- W3196680166 hasConcept C77553402 @default.
- W3196680166 hasConceptScore W3196680166C11413529 @default.
- W3196680166 hasConceptScore W3196680166C114614502 @default.
- W3196680166 hasConceptScore W3196680166C118615104 @default.
- W3196680166 hasConceptScore W3196680166C134306372 @default.
- W3196680166 hasConceptScore W3196680166C138885662 @default.
- W3196680166 hasConceptScore W3196680166C153207627 @default.
- W3196680166 hasConceptScore W3196680166C164226766 @default.
- W3196680166 hasConceptScore W3196680166C2779808786 @default.
- W3196680166 hasConceptScore W3196680166C33676613 @default.
- W3196680166 hasConceptScore W3196680166C33923547 @default.
- W3196680166 hasConceptScore W3196680166C41895202 @default.
- W3196680166 hasConceptScore W3196680166C57273362 @default.
- W3196680166 hasConceptScore W3196680166C77553402 @default.
- W3196680166 hasLocation W31966801661 @default.
- W3196680166 hasOpenAccess W3196680166 @default.
- W3196680166 hasPrimaryLocation W31966801661 @default.
- W3196680166 hasRelatedWork W1554836672 @default.
- W3196680166 hasRelatedWork W2000304127 @default.
- W3196680166 hasRelatedWork W2026844308 @default.
- W3196680166 hasRelatedWork W2028740471 @default.
- W3196680166 hasRelatedWork W2051569409 @default.
- W3196680166 hasRelatedWork W2085244703 @default.
- W3196680166 hasRelatedWork W2115610325 @default.
- W3196680166 hasRelatedWork W2144581009 @default.
- W3196680166 hasRelatedWork W2181355034 @default.
- W3196680166 hasRelatedWork W2344567946 @default.
- W3196680166 hasRelatedWork W2407537632 @default.
- W3196680166 hasRelatedWork W2625602046 @default.
- W3196680166 hasRelatedWork W2766910378 @default.
- W3196680166 hasRelatedWork W2805450713 @default.
- W3196680166 hasRelatedWork W2951420633 @default.
- W3196680166 hasRelatedWork W2951858576 @default.
- W3196680166 hasRelatedWork W3108023983 @default.
- W3196680166 hasRelatedWork W3135887889 @default.
- W3196680166 hasRelatedWork W3202145068 @default.
- W3196680166 hasRelatedWork W2137543927 @default.
- W3196680166 isParatext "false" @default.
- W3196680166 isRetracted "false" @default.
- W3196680166 magId "3196680166" @default.
- W3196680166 workType "article" @default.