Matches in SemOpenAlex for { <https://semopenalex.org/work/W3196692127> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W3196692127 abstract "Text classification is one of the areas where machine learning algorithms are used. The size of the dataset and the methods used for converting the textual words into vectors play a major role in classifying them. This paper proposes a heuristic based approach to classify the documents using Genetic Algorithm aided Support Vector Machines (SVM) and Ensemble Learning approach. The real valued representation of the textual data into vectors is done on applying Term Frequency – Inverse Document Frequency (TF-IDF) and Bi-Normal Separation (BNS). However, in this paper, the common data misclassification issue in SVM is overcome by introducing two algorithms that adds weightage to accurate classification. The first algorithm applied BNS and TF-IDF along with ensemble learning and constructs a voting classifier for classifying the textual documents. The results produced justify that TF-IDF produces good results with voting classifier than BNS for classification. Henceforth TF-IDF is applied in the subsequent approach for vector generation. Secondly, genetic algorithm is applied along with OneVsRest strategy in SVM to overcome the drawback of multiclass multilabel classification. The results show that Genetic algorithm improves the accuracy of classification even with a very small labelled dataset, as genetic algorithm applies the process of Mutation and Cross over across many generations to understand the pattern of right classification." @default.
- W3196692127 created "2021-09-13" @default.
- W3196692127 creator A5033798464 @default.
- W3196692127 creator A5035678653 @default.
- W3196692127 creator A5062797073 @default.
- W3196692127 date "2021-01-01" @default.
- W3196692127 modified "2023-10-18" @default.
- W3196692127 title "Genetic Algorithm and Ensemble Learning Aided Text Classification using Support Vector Machines" @default.
- W3196692127 cites W1560851690 @default.
- W3196692127 cites W1583061999 @default.
- W3196692127 cites W1971694273 @default.
- W3196692127 cites W2054039029 @default.
- W3196692127 cites W2108820680 @default.
- W3196692127 cites W2155529673 @default.
- W3196692127 cites W2757606615 @default.
- W3196692127 cites W2939793098 @default.
- W3196692127 doi "https://doi.org/10.14569/ijacsa.2021.0120830" @default.
- W3196692127 hasPublicationYear "2021" @default.
- W3196692127 type Work @default.
- W3196692127 sameAs 3196692127 @default.
- W3196692127 citedByCount "1" @default.
- W3196692127 countsByYear W31966921272023 @default.
- W3196692127 crossrefType "journal-article" @default.
- W3196692127 hasAuthorship W3196692127A5033798464 @default.
- W3196692127 hasAuthorship W3196692127A5035678653 @default.
- W3196692127 hasAuthorship W3196692127A5062797073 @default.
- W3196692127 hasBestOaLocation W31966921271 @default.
- W3196692127 hasConcept C119857082 @default.
- W3196692127 hasConcept C121332964 @default.
- W3196692127 hasConcept C12267149 @default.
- W3196692127 hasConcept C124101348 @default.
- W3196692127 hasConcept C132778050 @default.
- W3196692127 hasConcept C153180895 @default.
- W3196692127 hasConcept C153668964 @default.
- W3196692127 hasConcept C154945302 @default.
- W3196692127 hasConcept C17744445 @default.
- W3196692127 hasConcept C199539241 @default.
- W3196692127 hasConcept C41008148 @default.
- W3196692127 hasConcept C520049643 @default.
- W3196692127 hasConcept C61797465 @default.
- W3196692127 hasConcept C62520636 @default.
- W3196692127 hasConcept C81758059 @default.
- W3196692127 hasConcept C8880873 @default.
- W3196692127 hasConcept C94625758 @default.
- W3196692127 hasConcept C95623464 @default.
- W3196692127 hasConceptScore W3196692127C119857082 @default.
- W3196692127 hasConceptScore W3196692127C121332964 @default.
- W3196692127 hasConceptScore W3196692127C12267149 @default.
- W3196692127 hasConceptScore W3196692127C124101348 @default.
- W3196692127 hasConceptScore W3196692127C132778050 @default.
- W3196692127 hasConceptScore W3196692127C153180895 @default.
- W3196692127 hasConceptScore W3196692127C153668964 @default.
- W3196692127 hasConceptScore W3196692127C154945302 @default.
- W3196692127 hasConceptScore W3196692127C17744445 @default.
- W3196692127 hasConceptScore W3196692127C199539241 @default.
- W3196692127 hasConceptScore W3196692127C41008148 @default.
- W3196692127 hasConceptScore W3196692127C520049643 @default.
- W3196692127 hasConceptScore W3196692127C61797465 @default.
- W3196692127 hasConceptScore W3196692127C62520636 @default.
- W3196692127 hasConceptScore W3196692127C81758059 @default.
- W3196692127 hasConceptScore W3196692127C8880873 @default.
- W3196692127 hasConceptScore W3196692127C94625758 @default.
- W3196692127 hasConceptScore W3196692127C95623464 @default.
- W3196692127 hasIssue "8" @default.
- W3196692127 hasLocation W31966921271 @default.
- W3196692127 hasOpenAccess W3196692127 @default.
- W3196692127 hasPrimaryLocation W31966921271 @default.
- W3196692127 hasRelatedWork W1497951756 @default.
- W3196692127 hasRelatedWork W1894159578 @default.
- W3196692127 hasRelatedWork W2008876309 @default.
- W3196692127 hasRelatedWork W2010932316 @default.
- W3196692127 hasRelatedWork W2052960815 @default.
- W3196692127 hasRelatedWork W2055572829 @default.
- W3196692127 hasRelatedWork W2069544111 @default.
- W3196692127 hasRelatedWork W2913388591 @default.
- W3196692127 hasRelatedWork W3121841074 @default.
- W3196692127 hasRelatedWork W4297849332 @default.
- W3196692127 hasVolume "12" @default.
- W3196692127 isParatext "false" @default.
- W3196692127 isRetracted "false" @default.
- W3196692127 magId "3196692127" @default.
- W3196692127 workType "article" @default.