Matches in SemOpenAlex for { <https://semopenalex.org/work/W3196751574> ?p ?o ?g. }
- W3196751574 endingPage "992" @default.
- W3196751574 startingPage "980" @default.
- W3196751574 abstract "Biomass resources are intensively used as economical and green-reserve precursor preparation of sustainable carbon materials used in supercapacitors. The synthetic processes of biomass-based precursors (BPs) are the most determinant proceedings for obtaining activated carbons (ACs) used in the electrode of energy storage devices. The AC-based electrode preparation and operational condition parameters can affect the capacitance performance of electrode. In the present work, the potential of Artificial Neural Network (ANN) modeling is assessed in interpreting how activation procedure, structural features, electrode synthesizing procedure, and operational condition can affect the capacitive performance of the carbon-based electrode. Radial Basis Function (RBF) model is established for the estimation of specific capacitance of biomass-based activated carbon (BAC) utilized in the electrode. Moreover, the algorithms used in RBF model performed accurate predictions of the model with the lowest error. Besides, employing the combination of quantitative and qualitative variables could perform a synergistic result. The multi-data could achieve a precise cognizance of materials participating in electrode preparation to obtain higher specific capacitance. The sensitivity analysis showed prominent effects of structural and operational characteristics (e.g. micropore to macropore carbon structure), molarity of electrolyte, binder ratio, and activation agent ratio, on Electric Double-layer capacitor performance." @default.
- W3196751574 created "2021-09-13" @default.
- W3196751574 creator A5046998811 @default.
- W3196751574 creator A5048604393 @default.
- W3196751574 creator A5085914326 @default.
- W3196751574 date "2021-12-01" @default.
- W3196751574 modified "2023-10-18" @default.
- W3196751574 title "A multi-data-driven procedure towards a comprehensive understanding of the activated carbon electrodes performance (using for supercapacitor) employing ANN technique" @default.
- W3196751574 cites W1199129773 @default.
- W3196751574 cites W1923061348 @default.
- W3196751574 cites W1968721958 @default.
- W3196751574 cites W1991916565 @default.
- W3196751574 cites W1993303371 @default.
- W3196751574 cites W1994687459 @default.
- W3196751574 cites W2011774713 @default.
- W3196751574 cites W2018454740 @default.
- W3196751574 cites W2033275656 @default.
- W3196751574 cites W2082427252 @default.
- W3196751574 cites W2090727340 @default.
- W3196751574 cites W2091055305 @default.
- W3196751574 cites W2092142903 @default.
- W3196751574 cites W2095347532 @default.
- W3196751574 cites W2291448242 @default.
- W3196751574 cites W2344515788 @default.
- W3196751574 cites W2396726562 @default.
- W3196751574 cites W2397913590 @default.
- W3196751574 cites W2514643291 @default.
- W3196751574 cites W2520000537 @default.
- W3196751574 cites W2564289355 @default.
- W3196751574 cites W2583955450 @default.
- W3196751574 cites W2584089850 @default.
- W3196751574 cites W2586738349 @default.
- W3196751574 cites W2599128650 @default.
- W3196751574 cites W2600026839 @default.
- W3196751574 cites W2731026850 @default.
- W3196751574 cites W2737148855 @default.
- W3196751574 cites W2765382059 @default.
- W3196751574 cites W2774257654 @default.
- W3196751574 cites W2784601216 @default.
- W3196751574 cites W2790980462 @default.
- W3196751574 cites W2804287794 @default.
- W3196751574 cites W2810439513 @default.
- W3196751574 cites W2889474878 @default.
- W3196751574 cites W2889500699 @default.
- W3196751574 cites W2890166665 @default.
- W3196751574 cites W2896192476 @default.
- W3196751574 cites W2900104458 @default.
- W3196751574 cites W2901294310 @default.
- W3196751574 cites W2902495040 @default.
- W3196751574 cites W2906903809 @default.
- W3196751574 cites W2911106202 @default.
- W3196751574 cites W2921358543 @default.
- W3196751574 cites W2921477502 @default.
- W3196751574 cites W2942491183 @default.
- W3196751574 cites W2945194647 @default.
- W3196751574 cites W2946566613 @default.
- W3196751574 cites W2947295378 @default.
- W3196751574 cites W2965860040 @default.
- W3196751574 cites W2970499261 @default.
- W3196751574 cites W2972103642 @default.
- W3196751574 cites W2973565743 @default.
- W3196751574 cites W2976119549 @default.
- W3196751574 cites W2987505585 @default.
- W3196751574 cites W2988423384 @default.
- W3196751574 cites W2990562207 @default.
- W3196751574 cites W2991547105 @default.
- W3196751574 cites W2991869997 @default.
- W3196751574 cites W2993392915 @default.
- W3196751574 cites W2995146537 @default.
- W3196751574 cites W2995707855 @default.
- W3196751574 cites W2996130524 @default.
- W3196751574 cites W2999143753 @default.
- W3196751574 cites W2999663852 @default.
- W3196751574 cites W3000171570 @default.
- W3196751574 cites W3005715113 @default.
- W3196751574 cites W3009082118 @default.
- W3196751574 cites W3017259929 @default.
- W3196751574 cites W3017365286 @default.
- W3196751574 cites W3021824319 @default.
- W3196751574 cites W3037509272 @default.
- W3196751574 cites W3043270278 @default.
- W3196751574 cites W3080214442 @default.
- W3196751574 cites W3080366122 @default.
- W3196751574 cites W3082813113 @default.
- W3196751574 cites W3084731547 @default.
- W3196751574 cites W3090608006 @default.
- W3196751574 cites W3098934825 @default.
- W3196751574 cites W3102096994 @default.
- W3196751574 cites W3106658751 @default.
- W3196751574 cites W3113372379 @default.
- W3196751574 cites W3122687713 @default.
- W3196751574 cites W3126341853 @default.
- W3196751574 cites W3127767413 @default.
- W3196751574 cites W3131273504 @default.
- W3196751574 doi "https://doi.org/10.1016/j.renene.2021.08.102" @default.
- W3196751574 hasPublicationYear "2021" @default.
- W3196751574 type Work @default.
- W3196751574 sameAs 3196751574 @default.