Matches in SemOpenAlex for { <https://semopenalex.org/work/W3196754906> ?p ?o ?g. }
- W3196754906 endingPage "2283" @default.
- W3196754906 startingPage "2271" @default.
- W3196754906 abstract "Information diffusion prediction is an important task, which studies how information items spread among users. With the success of deep learning techniques, recurrent neural networks (RNNs) have shown their powerful capability in modeling information diffusion as sequential data. However, previous works focused on either microscopic diffusion prediction, which aims at guessing who will be the next influenced user at what time, or macroscopic diffusion prediction, which estimates the total numbers of influenced users during the diffusion process. To the best of our knowledge, few attempts have been made to suggest a unified model for both microscopic and macroscopic scales. In this article, we propose a novel full-scale diffusion prediction model based on reinforcement learning (RL). RL incorporates the macroscopic diffusion size information into the RNN-based microscopic diffusion model by addressing the nondifferentiable problem. We also employ an effective structural context extraction strategy to utilize the underlying social graph information. Experimental results show that our proposed model outperforms state-of-the-art baseline models on both microscopic and macroscopic diffusion predictions on three real-world datasets." @default.
- W3196754906 created "2021-09-13" @default.
- W3196754906 creator A5002250184 @default.
- W3196754906 creator A5019848399 @default.
- W3196754906 creator A5024128767 @default.
- W3196754906 creator A5046448314 @default.
- W3196754906 creator A5051805730 @default.
- W3196754906 creator A5060417049 @default.
- W3196754906 creator A5077231313 @default.
- W3196754906 date "2023-05-01" @default.
- W3196754906 modified "2023-10-05" @default.
- W3196754906 title "Full-Scale Information Diffusion Prediction With Reinforced Recurrent Networks" @default.
- W3196754906 cites W1497522841 @default.
- W3196754906 cites W1572431862 @default.
- W3196754906 cites W1742402942 @default.
- W3196754906 cites W179875071 @default.
- W3196754906 cites W1973956316 @default.
- W3196754906 cites W2022063488 @default.
- W3196754906 cites W2033389579 @default.
- W3196754906 cites W2069849731 @default.
- W3196754906 cites W2095016473 @default.
- W3196754906 cites W2102187991 @default.
- W3196754906 cites W2103126699 @default.
- W3196754906 cites W2119717200 @default.
- W3196754906 cites W2127492100 @default.
- W3196754906 cites W2128914432 @default.
- W3196754906 cites W2150375325 @default.
- W3196754906 cites W2296752489 @default.
- W3196754906 cites W2509830164 @default.
- W3196754906 cites W2551441958 @default.
- W3196754906 cites W2569283211 @default.
- W3196754906 cites W2605191235 @default.
- W3196754906 cites W2740189214 @default.
- W3196754906 cites W2767220239 @default.
- W3196754906 cites W2784974433 @default.
- W3196754906 cites W2795034086 @default.
- W3196754906 cites W2798822070 @default.
- W3196754906 cites W2897605361 @default.
- W3196754906 cites W2907927214 @default.
- W3196754906 cites W2951851909 @default.
- W3196754906 cites W2952395191 @default.
- W3196754906 cites W2954973878 @default.
- W3196754906 cites W2963493749 @default.
- W3196754906 cites W2965635372 @default.
- W3196754906 cites W2966382042 @default.
- W3196754906 cites W3001111845 @default.
- W3196754906 cites W3002293096 @default.
- W3196754906 cites W3028571922 @default.
- W3196754906 cites W3104010597 @default.
- W3196754906 cites W3104097132 @default.
- W3196754906 cites W3122471732 @default.
- W3196754906 cites W4232212779 @default.
- W3196754906 cites W4242087913 @default.
- W3196754906 doi "https://doi.org/10.1109/tnnls.2021.3106156" @default.
- W3196754906 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34469314" @default.
- W3196754906 hasPublicationYear "2023" @default.
- W3196754906 type Work @default.
- W3196754906 sameAs 3196754906 @default.
- W3196754906 citedByCount "4" @default.
- W3196754906 countsByYear W31967549062021 @default.
- W3196754906 countsByYear W31967549062023 @default.
- W3196754906 crossrefType "journal-article" @default.
- W3196754906 hasAuthorship W3196754906A5002250184 @default.
- W3196754906 hasAuthorship W3196754906A5019848399 @default.
- W3196754906 hasAuthorship W3196754906A5024128767 @default.
- W3196754906 hasAuthorship W3196754906A5046448314 @default.
- W3196754906 hasAuthorship W3196754906A5051805730 @default.
- W3196754906 hasAuthorship W3196754906A5060417049 @default.
- W3196754906 hasAuthorship W3196754906A5077231313 @default.
- W3196754906 hasConcept C111919701 @default.
- W3196754906 hasConcept C119857082 @default.
- W3196754906 hasConcept C121332964 @default.
- W3196754906 hasConcept C124101348 @default.
- W3196754906 hasConcept C147168706 @default.
- W3196754906 hasConcept C151730666 @default.
- W3196754906 hasConcept C154945302 @default.
- W3196754906 hasConcept C162324750 @default.
- W3196754906 hasConcept C187736073 @default.
- W3196754906 hasConcept C2778755073 @default.
- W3196754906 hasConcept C2779343474 @default.
- W3196754906 hasConcept C2780451532 @default.
- W3196754906 hasConcept C3017618536 @default.
- W3196754906 hasConcept C41008148 @default.
- W3196754906 hasConcept C50644808 @default.
- W3196754906 hasConcept C56739046 @default.
- W3196754906 hasConcept C62520636 @default.
- W3196754906 hasConcept C68710425 @default.
- W3196754906 hasConcept C69357855 @default.
- W3196754906 hasConcept C86803240 @default.
- W3196754906 hasConcept C97355855 @default.
- W3196754906 hasConcept C97541855 @default.
- W3196754906 hasConcept C98045186 @default.
- W3196754906 hasConceptScore W3196754906C111919701 @default.
- W3196754906 hasConceptScore W3196754906C119857082 @default.
- W3196754906 hasConceptScore W3196754906C121332964 @default.
- W3196754906 hasConceptScore W3196754906C124101348 @default.
- W3196754906 hasConceptScore W3196754906C147168706 @default.
- W3196754906 hasConceptScore W3196754906C151730666 @default.