Matches in SemOpenAlex for { <https://semopenalex.org/work/W3196808873> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W3196808873 endingPage "107460" @default.
- W3196808873 startingPage "107460" @default.
- W3196808873 abstract "Data pre-processing is a technique that transforms the raw data into a useful format for applying machine learning (ML) techniques. Feature selection (FS) and feature extraction (FeExt) form significant components of data pre-processing. FS is the identification of relevant features that enhances the accuracy of a model. Since, agricultural data contain diverse features related to climate, soil, fertilizer, FS attains significant importance as irrelevant features may adversely impact the prediction of the model built. Likewise, FeExt involves the derivation of new attributes from the prevailing attributes. All the information that the original attributes possess is present in these new features minus the duplicity. Keeping these points in mind, this work proposes a hybrid feature selection and feature extraction strategy for selecting features from the agricultural data set. A modified-Genetic Algorithm (m-GA) was developed by designing a fitness function based on “Mutual Information” (MutInf), and “Root Mean Square Error” (RtMSE) to choose the best features that affected the target attribute (crop yield in this case). These selected features were then subjected to feature extraction using “weighted principal component analysis” (wgt-PCA). The extracted features were then fed into different ML models viz. “Regression” (Reg), “Artificial Neural Networks” (ArtNN), “Adaptive Neuro Fuzzy Inference System” (ANFIS), “Ensemble of Trees” (EnT), and “Support Vector Regression” (SuVR). Trials on 3 benchmark and 8 real-world farming datasets revealed that the developed hybrid feature selection and extraction technique performed with significant improvements with respect to Rsq 2 , RtMSE, and “mean absolute error” (MAE) in comparison to FS and FeExt methods such as Correlation Analysis (CA), Singular Valued Decomposition (SiVD), Genetic Algorithm (GA), and wgt-PCA on “benchmark” and “real-world” farming datasets." @default.
- W3196808873 created "2021-09-13" @default.
- W3196808873 creator A5006437115 @default.
- W3196808873 creator A5076168036 @default.
- W3196808873 date "2021-11-01" @default.
- W3196808873 modified "2023-10-02" @default.
- W3196808873 title "A modified genetic algorithm and weighted principal component analysis based feature selection and extraction strategy in agriculture" @default.
- W3196808873 cites W1512448514 @default.
- W3196808873 cites W2007910329 @default.
- W3196808873 cites W2027666102 @default.
- W3196808873 cites W2061896053 @default.
- W3196808873 cites W2143062820 @default.
- W3196808873 cites W2167101736 @default.
- W3196808873 cites W2529944723 @default.
- W3196808873 cites W2726137661 @default.
- W3196808873 cites W2945650984 @default.
- W3196808873 cites W2978631110 @default.
- W3196808873 cites W3086007433 @default.
- W3196808873 cites W3103444592 @default.
- W3196808873 doi "https://doi.org/10.1016/j.knosys.2021.107460" @default.
- W3196808873 hasPublicationYear "2021" @default.
- W3196808873 type Work @default.
- W3196808873 sameAs 3196808873 @default.
- W3196808873 citedByCount "8" @default.
- W3196808873 countsByYear W31968088732022 @default.
- W3196808873 countsByYear W31968088732023 @default.
- W3196808873 crossrefType "journal-article" @default.
- W3196808873 hasAuthorship W3196808873A5006437115 @default.
- W3196808873 hasAuthorship W3196808873A5076168036 @default.
- W3196808873 hasConcept C11413529 @default.
- W3196808873 hasConcept C119857082 @default.
- W3196808873 hasConcept C121332964 @default.
- W3196808873 hasConcept C124101348 @default.
- W3196808873 hasConcept C148483581 @default.
- W3196808873 hasConcept C153180895 @default.
- W3196808873 hasConcept C154945302 @default.
- W3196808873 hasConcept C168167062 @default.
- W3196808873 hasConcept C27438332 @default.
- W3196808873 hasConcept C41008148 @default.
- W3196808873 hasConcept C81917197 @default.
- W3196808873 hasConcept C8880873 @default.
- W3196808873 hasConcept C97355855 @default.
- W3196808873 hasConceptScore W3196808873C11413529 @default.
- W3196808873 hasConceptScore W3196808873C119857082 @default.
- W3196808873 hasConceptScore W3196808873C121332964 @default.
- W3196808873 hasConceptScore W3196808873C124101348 @default.
- W3196808873 hasConceptScore W3196808873C148483581 @default.
- W3196808873 hasConceptScore W3196808873C153180895 @default.
- W3196808873 hasConceptScore W3196808873C154945302 @default.
- W3196808873 hasConceptScore W3196808873C168167062 @default.
- W3196808873 hasConceptScore W3196808873C27438332 @default.
- W3196808873 hasConceptScore W3196808873C41008148 @default.
- W3196808873 hasConceptScore W3196808873C81917197 @default.
- W3196808873 hasConceptScore W3196808873C8880873 @default.
- W3196808873 hasConceptScore W3196808873C97355855 @default.
- W3196808873 hasLocation W31968088731 @default.
- W3196808873 hasOpenAccess W3196808873 @default.
- W3196808873 hasPrimaryLocation W31968088731 @default.
- W3196808873 hasRelatedWork W2085553065 @default.
- W3196808873 hasRelatedWork W2108104958 @default.
- W3196808873 hasRelatedWork W2144653557 @default.
- W3196808873 hasRelatedWork W2157903613 @default.
- W3196808873 hasRelatedWork W2328896011 @default.
- W3196808873 hasRelatedWork W2367227827 @default.
- W3196808873 hasRelatedWork W2380927352 @default.
- W3196808873 hasRelatedWork W3178621026 @default.
- W3196808873 hasRelatedWork W3210877509 @default.
- W3196808873 hasRelatedWork W2137598809 @default.
- W3196808873 hasVolume "232" @default.
- W3196808873 isParatext "false" @default.
- W3196808873 isRetracted "false" @default.
- W3196808873 magId "3196808873" @default.
- W3196808873 workType "article" @default.