Matches in SemOpenAlex for { <https://semopenalex.org/work/W3196852145> ?p ?o ?g. }
- W3196852145 endingPage "369" @default.
- W3196852145 startingPage "347" @default.
- W3196852145 abstract "Abstract Representation learning has been widely applied in real-world recommendation systems to capture the features of both users and items. Existing grocery recommendation methods only represent each user and item by single deterministic points in a low-dimensional continuous space, which limit the expressive ability of their embeddings, resulting in recommendation performance bottlenecks. In addition, existing representation learning methods for grocery recommendation only consider the items (products) as independent entities, neglecting their other valuable side information, such as the textual descriptions and the categorical data of items. In this paper, we propose the Variational Bayesian Context-Aware Representation (VBCAR) model for grocery recommendation. VBCAR is a novel variational Bayesian model that learns distributional representations of users and items by leveraging basket context information from historical interactions. Our VBCAR model is also extendable to leverage side information by encoding contextual features into representations based on the inference encoder. We conduct extensive experiments on three real-world grocery datasets to assess the effectiveness of our model as well as the impact of different construction strategies for item side information. Our results show that our VBCAR model outperforms the current state-of-the-art grocery recommendation models while integrating item side information (especially the categorical features with the textual information of items) results in further significant performance gains. Furthermore, we demonstrate through analysis that our model is able to effectively encode similarities between product types, which we argue is the primary reason for the observed effectiveness gains." @default.
- W3196852145 created "2021-09-13" @default.
- W3196852145 creator A5057643560 @default.
- W3196852145 creator A5057657785 @default.
- W3196852145 creator A5073342482 @default.
- W3196852145 creator A5079046603 @default.
- W3196852145 date "2021-08-27" @default.
- W3196852145 modified "2023-10-11" @default.
- W3196852145 title "Variational Bayesian representation learning for grocery recommendation" @default.
- W3196852145 cites W2002834872 @default.
- W3196852145 cites W2030484290 @default.
- W3196852145 cites W2038585576 @default.
- W3196852145 cites W2080320419 @default.
- W3196852145 cites W2085040216 @default.
- W3196852145 cites W2101409192 @default.
- W3196852145 cites W2134040744 @default.
- W3196852145 cites W2171279286 @default.
- W3196852145 cites W2309627465 @default.
- W3196852145 cites W2474909202 @default.
- W3196852145 cites W2604525406 @default.
- W3196852145 cites W2605350416 @default.
- W3196852145 cites W2725606191 @default.
- W3196852145 cites W2762735242 @default.
- W3196852145 cites W2798749602 @default.
- W3196852145 cites W2883308936 @default.
- W3196852145 cites W2886209086 @default.
- W3196852145 cites W2896962583 @default.
- W3196852145 cites W2901227482 @default.
- W3196852145 cites W2904684641 @default.
- W3196852145 cites W2908461307 @default.
- W3196852145 cites W2911459452 @default.
- W3196852145 cites W2932735187 @default.
- W3196852145 cites W2963085847 @default.
- W3196852145 cites W2963864161 @default.
- W3196852145 cites W2964044287 @default.
- W3196852145 cites W2964341035 @default.
- W3196852145 cites W2979826702 @default.
- W3196852145 cites W3025937945 @default.
- W3196852145 cites W3035063214 @default.
- W3196852145 cites W3088516879 @default.
- W3196852145 cites W3088694469 @default.
- W3196852145 cites W3088777230 @default.
- W3196852145 cites W3100278010 @default.
- W3196852145 cites W3101380508 @default.
- W3196852145 cites W4301213493 @default.
- W3196852145 cites W880911330 @default.
- W3196852145 cites W3083640775 @default.
- W3196852145 doi "https://doi.org/10.1007/s10791-021-09397-1" @default.
- W3196852145 hasPublicationYear "2021" @default.
- W3196852145 type Work @default.
- W3196852145 sameAs 3196852145 @default.
- W3196852145 citedByCount "0" @default.
- W3196852145 crossrefType "journal-article" @default.
- W3196852145 hasAuthorship W3196852145A5057643560 @default.
- W3196852145 hasAuthorship W3196852145A5057657785 @default.
- W3196852145 hasAuthorship W3196852145A5073342482 @default.
- W3196852145 hasAuthorship W3196852145A5079046603 @default.
- W3196852145 hasBestOaLocation W31968521451 @default.
- W3196852145 hasConcept C104317684 @default.
- W3196852145 hasConcept C107673813 @default.
- W3196852145 hasConcept C111919701 @default.
- W3196852145 hasConcept C118505674 @default.
- W3196852145 hasConcept C119857082 @default.
- W3196852145 hasConcept C151730666 @default.
- W3196852145 hasConcept C153083717 @default.
- W3196852145 hasConcept C154945302 @default.
- W3196852145 hasConcept C160234255 @default.
- W3196852145 hasConcept C17744445 @default.
- W3196852145 hasConcept C185592680 @default.
- W3196852145 hasConcept C199539241 @default.
- W3196852145 hasConcept C23123220 @default.
- W3196852145 hasConcept C2776214188 @default.
- W3196852145 hasConcept C2776359362 @default.
- W3196852145 hasConcept C2779343474 @default.
- W3196852145 hasConcept C41008148 @default.
- W3196852145 hasConcept C5274069 @default.
- W3196852145 hasConcept C55493867 @default.
- W3196852145 hasConcept C557471498 @default.
- W3196852145 hasConcept C59404180 @default.
- W3196852145 hasConcept C66746571 @default.
- W3196852145 hasConcept C86803240 @default.
- W3196852145 hasConcept C94625758 @default.
- W3196852145 hasConceptScore W3196852145C104317684 @default.
- W3196852145 hasConceptScore W3196852145C107673813 @default.
- W3196852145 hasConceptScore W3196852145C111919701 @default.
- W3196852145 hasConceptScore W3196852145C118505674 @default.
- W3196852145 hasConceptScore W3196852145C119857082 @default.
- W3196852145 hasConceptScore W3196852145C151730666 @default.
- W3196852145 hasConceptScore W3196852145C153083717 @default.
- W3196852145 hasConceptScore W3196852145C154945302 @default.
- W3196852145 hasConceptScore W3196852145C160234255 @default.
- W3196852145 hasConceptScore W3196852145C17744445 @default.
- W3196852145 hasConceptScore W3196852145C185592680 @default.
- W3196852145 hasConceptScore W3196852145C199539241 @default.
- W3196852145 hasConceptScore W3196852145C23123220 @default.
- W3196852145 hasConceptScore W3196852145C2776214188 @default.
- W3196852145 hasConceptScore W3196852145C2776359362 @default.
- W3196852145 hasConceptScore W3196852145C2779343474 @default.