Matches in SemOpenAlex for { <https://semopenalex.org/work/W3196872053> ?p ?o ?g. }
- W3196872053 endingPage "17016" @default.
- W3196872053 startingPage "17003" @default.
- W3196872053 abstract "Abstract. The vertical distribution of aerosol extinction coefficient (EC) measured by lidar systems has been used to retrieve the profile of particle matter with a diameter <2.5 µm (PM2.5). However, the traditional linear model (LM) cannot consider the influence of multiple meteorological variables sufficiently and then induce the low inversion accuracy. Generally, the machine learning (ML) algorithms can input multiple features which may provide us with a new way to solve this constraint. In this study, the surface aerosol EC and meteorological data from January 2014 to December 2017 were used to explore the conversion of aerosol EC to PM2.5 concentrations. Four ML algorithms were used to train the PM2.5 prediction models: random forest (RF), K-nearest neighbor (KNN), support vector machine (SVM) and extreme gradient boosting decision tree (XGB). The mean absolute error (root mean square error) of LM, RF, KNN, SVM and XGB models were 11.66 (15.68), 5.35 (7.96), 7.95 (11.54), 6.96 (11.18) and 5.62 (8.27) µg/m3, respectively. This result shows that the RF model is the most suitable model for PM2.5 inversions from EC and meteorological data. Moreover, the sensitivity analysis of model input parameters was also conducted. All these results further indicated that it is necessary to consider the effect of meteorological variables when using EC to retrieve PM2.5 concentrations. Finally, the diurnal and seasonal variations of transport flux (TF) and PM2.5 profiles were analyzed based on the lidar data. The large PM2.5 concentration occurred at approximately 13:00–17:00 local time (LT) in 0.2–0.8 km. The diurnal variations of the TF show a clear conveyor belt at approximately 12:00–18:00 LT in 0.5–0.8 km. The results indicated that air pollutant transport over Wuhan mainly occurs at approximately 12:00–18:00 LT in 0.5–0.8 km. The TF near the ground usually has the highest value in winter (0.26 mg/m2 s), followed by the autumn and summer (0.2 and 0.19 mg/m2 s, respectively), and the lowest value in spring (0.14 mg/m2 s). These findings give us important information on the atmospheric profile and provide us sufficient confidence to apply lidar in the study of air quality monitoring." @default.
- W3196872053 created "2021-09-13" @default.
- W3196872053 creator A5007587959 @default.
- W3196872053 creator A5012670185 @default.
- W3196872053 creator A5016781161 @default.
- W3196872053 creator A5017476303 @default.
- W3196872053 creator A5022380281 @default.
- W3196872053 creator A5025319461 @default.
- W3196872053 creator A5045036212 @default.
- W3196872053 creator A5046308125 @default.
- W3196872053 date "2021-11-24" @default.
- W3196872053 modified "2023-09-30" @default.
- W3196872053 title "Estimation of the vertical distribution of particle matter (PM<sub>2.5</sub>) concentration and its transport flux from lidar measurements based on machine learning algorithms" @default.
- W3196872053 cites W1487746570 @default.
- W3196872053 cites W1884173788 @default.
- W3196872053 cites W1887798800 @default.
- W3196872053 cites W1968004822 @default.
- W3196872053 cites W1985258161 @default.
- W3196872053 cites W1996496702 @default.
- W3196872053 cites W2014401819 @default.
- W3196872053 cites W2015544209 @default.
- W3196872053 cites W2042679028 @default.
- W3196872053 cites W2044482877 @default.
- W3196872053 cites W2056489048 @default.
- W3196872053 cites W2061762871 @default.
- W3196872053 cites W2066245043 @default.
- W3196872053 cites W2070493638 @default.
- W3196872053 cites W2074749034 @default.
- W3196872053 cites W2087199341 @default.
- W3196872053 cites W2119458520 @default.
- W3196872053 cites W2128727570 @default.
- W3196872053 cites W2142854301 @default.
- W3196872053 cites W2171009670 @default.
- W3196872053 cites W2189499426 @default.
- W3196872053 cites W2194097676 @default.
- W3196872053 cites W2316657201 @default.
- W3196872053 cites W2465847861 @default.
- W3196872053 cites W2539577779 @default.
- W3196872053 cites W2565250589 @default.
- W3196872053 cites W2612321463 @default.
- W3196872053 cites W2626326445 @default.
- W3196872053 cites W2753214643 @default.
- W3196872053 cites W2757806018 @default.
- W3196872053 cites W2770190883 @default.
- W3196872053 cites W2790094040 @default.
- W3196872053 cites W2800133189 @default.
- W3196872053 cites W2887867435 @default.
- W3196872053 cites W2900333869 @default.
- W3196872053 cites W2900907778 @default.
- W3196872053 cites W2909481090 @default.
- W3196872053 cites W2911964244 @default.
- W3196872053 cites W2917305104 @default.
- W3196872053 cites W2953978338 @default.
- W3196872053 cites W2955270969 @default.
- W3196872053 cites W2968894603 @default.
- W3196872053 cites W2975819261 @default.
- W3196872053 cites W2989981902 @default.
- W3196872053 cites W2997915788 @default.
- W3196872053 cites W3008599913 @default.
- W3196872053 cites W3012826589 @default.
- W3196872053 cites W3035769787 @default.
- W3196872053 cites W3036686135 @default.
- W3196872053 cites W3038444436 @default.
- W3196872053 cites W3047932907 @default.
- W3196872053 cites W3083046904 @default.
- W3196872053 cites W3094753575 @default.
- W3196872053 cites W3101985318 @default.
- W3196872053 cites W3115239824 @default.
- W3196872053 cites W3118292677 @default.
- W3196872053 cites W3122817556 @default.
- W3196872053 cites W3123013526 @default.
- W3196872053 cites W3135428366 @default.
- W3196872053 cites W3135517498 @default.
- W3196872053 cites W3136313833 @default.
- W3196872053 cites W3194202255 @default.
- W3196872053 cites W4239510810 @default.
- W3196872053 cites W4361804721 @default.
- W3196872053 doi "https://doi.org/10.5194/acp-21-17003-2021" @default.
- W3196872053 hasPublicationYear "2021" @default.
- W3196872053 type Work @default.
- W3196872053 sameAs 3196872053 @default.
- W3196872053 citedByCount "14" @default.
- W3196872053 countsByYear W31968720532022 @default.
- W3196872053 countsByYear W31968720532023 @default.
- W3196872053 crossrefType "journal-article" @default.
- W3196872053 hasAuthorship W3196872053A5007587959 @default.
- W3196872053 hasAuthorship W3196872053A5012670185 @default.
- W3196872053 hasAuthorship W3196872053A5016781161 @default.
- W3196872053 hasAuthorship W3196872053A5017476303 @default.
- W3196872053 hasAuthorship W3196872053A5022380281 @default.
- W3196872053 hasAuthorship W3196872053A5025319461 @default.
- W3196872053 hasAuthorship W3196872053A5045036212 @default.
- W3196872053 hasAuthorship W3196872053A5046308125 @default.
- W3196872053 hasBestOaLocation W31968720531 @default.
- W3196872053 hasConcept C105795698 @default.
- W3196872053 hasConcept C11413529 @default.
- W3196872053 hasConcept C121332964 @default.
- W3196872053 hasConcept C12267149 @default.