Matches in SemOpenAlex for { <https://semopenalex.org/work/W3196955149> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W3196955149 endingPage "78" @default.
- W3196955149 startingPage "71" @default.
- W3196955149 abstract "The presence on modern aviation gas-turbine engines of dozens and even hundreds of sensors for continuous registration of various parameters of their operation makes it possible to collect and process large amounts of information. This stimulates the development of monitoring and diagnostic systems. At the same time the presence of great volumes of information is not always a sufficient condition for making adequate managerial decisions, especially in the case of evaluation of the technical condition of aviation engines. Thus it is necessary to consider, that aviation engines it is objects which concern to individualized, i.e. to such which are in the sort unique. Therefore, the theory of creating systems to assess the technical state of aircraft engines is formed on the background of the development of modern neural network technology and requires the formation of specific methodological apparatus. From these positions in the article the methods which are used at carrying out clustering of the initial information received at work of modern systems of an estimation and forecasting of a technical condition of aviation gas-turbine engines are considered. This task is particularly relevant for creating neural network multimode models of aircraft engines used in technical state estimation systems for identification of possible failures and damages. Metric, optimization and recurrent methods of input data clustering are considered in the article. The main attention is given to comparison of clustering methods in order to choose the most effective of them for the aircraft engine condition evaluation systems and suitable for implementation of systems with meta-learning. The implementation of clustering methods of initial data allows us to breakdown diagnostic images of objects not by one parameter, but by a whole set of features. In addition, cluster analysis, unlike most mathematical-statistical methods do not impose any restrictions on the type of objects under consideration, and allows us to consider a set of raw data of almost arbitrary nature, which is very important when assessing the technical condition of aircraft engines. At the same time cluster analysis allows one to consider a sufficiently large volume of information and sharply reduce, compress large arrays of parametrical information, make them compact and visual." @default.
- W3196955149 created "2021-09-13" @default.
- W3196955149 creator A5000717647 @default.
- W3196955149 creator A5004704693 @default.
- W3196955149 creator A5070725970 @default.
- W3196955149 date "2021-08-27" @default.
- W3196955149 modified "2023-09-26" @default.
- W3196955149 title "Methods of clustering parameters in the creation of neural network multi-mode dynamic models of aircraft engines" @default.
- W3196955149 doi "https://doi.org/10.32620/aktt.2021.4sup2.09" @default.
- W3196955149 hasPublicationYear "2021" @default.
- W3196955149 type Work @default.
- W3196955149 sameAs 3196955149 @default.
- W3196955149 citedByCount "0" @default.
- W3196955149 crossrefType "journal-article" @default.
- W3196955149 hasAuthorship W3196955149A5000717647 @default.
- W3196955149 hasAuthorship W3196955149A5004704693 @default.
- W3196955149 hasAuthorship W3196955149A5070725970 @default.
- W3196955149 hasBestOaLocation W31969551491 @default.
- W3196955149 hasConcept C111919701 @default.
- W3196955149 hasConcept C127413603 @default.
- W3196955149 hasConcept C146978453 @default.
- W3196955149 hasConcept C154945302 @default.
- W3196955149 hasConcept C176217482 @default.
- W3196955149 hasConcept C201995342 @default.
- W3196955149 hasConcept C21547014 @default.
- W3196955149 hasConcept C23123220 @default.
- W3196955149 hasConcept C41008148 @default.
- W3196955149 hasConcept C50644808 @default.
- W3196955149 hasConcept C73555534 @default.
- W3196955149 hasConcept C74448152 @default.
- W3196955149 hasConcept C88548561 @default.
- W3196955149 hasConcept C98045186 @default.
- W3196955149 hasConceptScore W3196955149C111919701 @default.
- W3196955149 hasConceptScore W3196955149C127413603 @default.
- W3196955149 hasConceptScore W3196955149C146978453 @default.
- W3196955149 hasConceptScore W3196955149C154945302 @default.
- W3196955149 hasConceptScore W3196955149C176217482 @default.
- W3196955149 hasConceptScore W3196955149C201995342 @default.
- W3196955149 hasConceptScore W3196955149C21547014 @default.
- W3196955149 hasConceptScore W3196955149C23123220 @default.
- W3196955149 hasConceptScore W3196955149C41008148 @default.
- W3196955149 hasConceptScore W3196955149C50644808 @default.
- W3196955149 hasConceptScore W3196955149C73555534 @default.
- W3196955149 hasConceptScore W3196955149C74448152 @default.
- W3196955149 hasConceptScore W3196955149C88548561 @default.
- W3196955149 hasConceptScore W3196955149C98045186 @default.
- W3196955149 hasIssue "4sup2" @default.
- W3196955149 hasLocation W31969551491 @default.
- W3196955149 hasLocation W31969551492 @default.
- W3196955149 hasOpenAccess W3196955149 @default.
- W3196955149 hasPrimaryLocation W31969551491 @default.
- W3196955149 hasRelatedWork W1980327186 @default.
- W3196955149 hasRelatedWork W2064552575 @default.
- W3196955149 hasRelatedWork W2164544737 @default.
- W3196955149 hasRelatedWork W2362019975 @default.
- W3196955149 hasRelatedWork W2374294973 @default.
- W3196955149 hasRelatedWork W2382290278 @default.
- W3196955149 hasRelatedWork W2386387936 @default.
- W3196955149 hasRelatedWork W2899084033 @default.
- W3196955149 hasRelatedWork W2012842278 @default.
- W3196955149 hasRelatedWork W2156262337 @default.
- W3196955149 isParatext "false" @default.
- W3196955149 isRetracted "false" @default.
- W3196955149 magId "3196955149" @default.
- W3196955149 workType "article" @default.