Matches in SemOpenAlex for { <https://semopenalex.org/work/W3196962030> ?p ?o ?g. }
- W3196962030 abstract "For the issue of collapse susceptibility prediction (CSP), minimal attention has been paid to explore the uncertainty characteristics of different machine learning models predicting collapse susceptibility. In this study, six kinds of typical machine learning methods, namely, logistic regression (LR), radial basis function neural network (RBF), multilayer perceptron (MLP), support vector machine (SVM), chi-square automatic interactive detection decision tree (CHAID), and random forest (RF) models, are constructed to do CSP. In this regard, An’yuan County in China, with a total of 108 collapses and 11 related environmental factors acquired through remote sensing and GIS technologies, is selected as a case study. The spatial dataset is first constructed, and then these machine learning models are used to implement CSP. Finally, the uncertainty characteristics of the CSP results are explored according to the accuracies, mean values, and standard deviations of the collapse susceptibility indexes (CSIs) and the Kendall synergy coefficient test. In addition, Huichang County, China, is used as another study case to avoid the uncertainty of different study areas. Results show that 1) overall, all six kinds of machine learning models reasonably and accurately predict the collapse susceptibility in An’yuan County; 2) the RF model has the highest prediction accuracy, followed by the CHAID, SVM, MLP, RBF, and LR models; and 3) the CSP results of these models are significantly different, with the mean value (0.2718) and average rank (2.72) of RF being smaller than those of the other five models, followed by the CHAID (0.3210 and 3.29), SVM (0.3268 and 3.48), MLP (0.3354 and 3.64), RBF (0.3449 and 3.81), and LR (0.3496 and 4.06), and with a Kendall synergy coefficient value of 0.062. Conclusively, it is necessary to adopt a series of different machine learning models to predict collapse susceptibility for cross-validation and comparison. Furthermore, the RF model has the highest prediction accuracy and the lowest uncertainty of the CSP results of the machine learning models." @default.
- W3196962030 created "2021-09-13" @default.
- W3196962030 creator A5022586413 @default.
- W3196962030 creator A5026235992 @default.
- W3196962030 creator A5040905675 @default.
- W3196962030 creator A5049970336 @default.
- W3196962030 creator A5091798976 @default.
- W3196962030 date "2021-09-03" @default.
- W3196962030 modified "2023-09-27" @default.
- W3196962030 title "Uncertainties of Collapse Susceptibility Prediction Based on Remote Sensing and GIS: Effects of Different Machine Learning Models" @default.
- W3196962030 cites W1850710971 @default.
- W3196962030 cites W1980703291 @default.
- W3196962030 cites W2006140843 @default.
- W3196962030 cites W2010103528 @default.
- W3196962030 cites W2012118327 @default.
- W3196962030 cites W2077483615 @default.
- W3196962030 cites W2090292633 @default.
- W3196962030 cites W2134070704 @default.
- W3196962030 cites W2171612326 @default.
- W3196962030 cites W2342016430 @default.
- W3196962030 cites W2343311097 @default.
- W3196962030 cites W2414813772 @default.
- W3196962030 cites W2489814317 @default.
- W3196962030 cites W2542420325 @default.
- W3196962030 cites W2567326027 @default.
- W3196962030 cites W2592225083 @default.
- W3196962030 cites W2619767629 @default.
- W3196962030 cites W2758350461 @default.
- W3196962030 cites W2789424894 @default.
- W3196962030 cites W2789555074 @default.
- W3196962030 cites W2793729791 @default.
- W3196962030 cites W2808088269 @default.
- W3196962030 cites W2892725352 @default.
- W3196962030 cites W2898517807 @default.
- W3196962030 cites W2911893501 @default.
- W3196962030 cites W2915041174 @default.
- W3196962030 cites W2927539500 @default.
- W3196962030 cites W2949017992 @default.
- W3196962030 cites W2969608668 @default.
- W3196962030 cites W2972534151 @default.
- W3196962030 cites W2980595968 @default.
- W3196962030 cites W2981581709 @default.
- W3196962030 cites W2983557499 @default.
- W3196962030 cites W2984212179 @default.
- W3196962030 cites W2997420666 @default.
- W3196962030 cites W2999729702 @default.
- W3196962030 cites W3004202498 @default.
- W3196962030 cites W3004932743 @default.
- W3196962030 cites W3009542699 @default.
- W3196962030 cites W3010924259 @default.
- W3196962030 cites W3014673353 @default.
- W3196962030 cites W3028953511 @default.
- W3196962030 cites W3032913569 @default.
- W3196962030 cites W3038187968 @default.
- W3196962030 cites W3040479899 @default.
- W3196962030 cites W3041776689 @default.
- W3196962030 cites W3041778588 @default.
- W3196962030 cites W3043846985 @default.
- W3196962030 cites W3044090919 @default.
- W3196962030 cites W3044617142 @default.
- W3196962030 cites W3046712942 @default.
- W3196962030 cites W3048597888 @default.
- W3196962030 cites W3048897107 @default.
- W3196962030 cites W3049181801 @default.
- W3196962030 cites W3085034080 @default.
- W3196962030 cites W3087802838 @default.
- W3196962030 cites W3111588349 @default.
- W3196962030 cites W3114792939 @default.
- W3196962030 cites W3116766382 @default.
- W3196962030 cites W3126154525 @default.
- W3196962030 cites W3126772299 @default.
- W3196962030 cites W3131504984 @default.
- W3196962030 cites W3135457784 @default.
- W3196962030 cites W3135881294 @default.
- W3196962030 cites W3137609428 @default.
- W3196962030 cites W3169157623 @default.
- W3196962030 cites W596984334 @default.
- W3196962030 doi "https://doi.org/10.3389/feart.2021.731058" @default.
- W3196962030 hasPublicationYear "2021" @default.
- W3196962030 type Work @default.
- W3196962030 sameAs 3196962030 @default.
- W3196962030 citedByCount "7" @default.
- W3196962030 countsByYear W31969620302022 @default.
- W3196962030 countsByYear W31969620302023 @default.
- W3196962030 crossrefType "journal-article" @default.
- W3196962030 hasAuthorship W3196962030A5022586413 @default.
- W3196962030 hasAuthorship W3196962030A5026235992 @default.
- W3196962030 hasAuthorship W3196962030A5040905675 @default.
- W3196962030 hasAuthorship W3196962030A5049970336 @default.
- W3196962030 hasAuthorship W3196962030A5091798976 @default.
- W3196962030 hasBestOaLocation W31969620301 @default.
- W3196962030 hasConcept C105795698 @default.
- W3196962030 hasConcept C119857082 @default.
- W3196962030 hasConcept C12267149 @default.
- W3196962030 hasConcept C124101348 @default.
- W3196962030 hasConcept C151956035 @default.
- W3196962030 hasConcept C154945302 @default.
- W3196962030 hasConcept C16023879 @default.
- W3196962030 hasConcept C169258074 @default.
- W3196962030 hasConcept C179717631 @default.