Matches in SemOpenAlex for { <https://semopenalex.org/work/W3196962213> ?p ?o ?g. }
- W3196962213 endingPage "341" @default.
- W3196962213 startingPage "330" @default.
- W3196962213 abstract "Optic disc and cup segmentation play an essential step towards automatic retinal diagnose system. The task is very challenging since the boundary between optic disc and cup is weak and the existing segmentation network with cross-entropy loss is hard to inject domain-specific knowledge. To solve the problem, we propose a level set based deep learning method for optic disc and cup segmentation. Particularly, we treat the output of the neural network as a level set and add several constraints to make the predicted level set satisfy some characteristics, such as the length constraint and region constraint. The length term lets the boundary tend to smooth while the region term lets the response inside the predicted area tend to be the same. The region term considers the relationship between pixels inside optic disc or cup while the cross-entropy loss treats the segmentation as a pixel-wise classification without considering the relationship between pixels. We conduct extensive experiments on several datasets including ORIGA and REFUGE and DRISHTI-GS dataset. The experiment results verify the effectiveness of our method." @default.
- W3196962213 created "2021-09-13" @default.
- W3196962213 creator A5002891542 @default.
- W3196962213 creator A5004658590 @default.
- W3196962213 creator A5007839236 @default.
- W3196962213 creator A5010906829 @default.
- W3196962213 creator A5023130798 @default.
- W3196962213 creator A5032686951 @default.
- W3196962213 creator A5074337782 @default.
- W3196962213 date "2021-11-01" @default.
- W3196962213 modified "2023-10-14" @default.
- W3196962213 title "Deep level set learning for optic disc and cup segmentation" @default.
- W3196962213 cites W1970855452 @default.
- W3196962213 cites W1972443523 @default.
- W3196962213 cites W1991113069 @default.
- W3196962213 cites W2081178133 @default.
- W3196962213 cites W2096741933 @default.
- W3196962213 cites W2108824200 @default.
- W3196962213 cites W2116040950 @default.
- W3196962213 cites W2139478903 @default.
- W3196962213 cites W2147427282 @default.
- W3196962213 cites W2155343350 @default.
- W3196962213 cites W2160226180 @default.
- W3196962213 cites W2160605010 @default.
- W3196962213 cites W2263495255 @default.
- W3196962213 cites W2395611524 @default.
- W3196962213 cites W2406979340 @default.
- W3196962213 cites W2464708700 @default.
- W3196962213 cites W2586834759 @default.
- W3196962213 cites W2605570189 @default.
- W3196962213 cites W2782741602 @default.
- W3196962213 cites W2899144726 @default.
- W3196962213 cites W2900936384 @default.
- W3196962213 cites W2912806832 @default.
- W3196962213 cites W2941075605 @default.
- W3196962213 cites W2945789372 @default.
- W3196962213 cites W2963150697 @default.
- W3196962213 cites W2979448322 @default.
- W3196962213 cites W3016150883 @default.
- W3196962213 cites W3025720159 @default.
- W3196962213 cites W3033039186 @default.
- W3196962213 cites W3034167473 @default.
- W3196962213 cites W3036597192 @default.
- W3196962213 cites W3101386228 @default.
- W3196962213 cites W3101507774 @default.
- W3196962213 cites W3103010481 @default.
- W3196962213 doi "https://doi.org/10.1016/j.neucom.2021.08.102" @default.
- W3196962213 hasPublicationYear "2021" @default.
- W3196962213 type Work @default.
- W3196962213 sameAs 3196962213 @default.
- W3196962213 citedByCount "8" @default.
- W3196962213 countsByYear W31969622132022 @default.
- W3196962213 countsByYear W31969622132023 @default.
- W3196962213 crossrefType "journal-article" @default.
- W3196962213 hasAuthorship W3196962213A5002891542 @default.
- W3196962213 hasAuthorship W3196962213A5004658590 @default.
- W3196962213 hasAuthorship W3196962213A5007839236 @default.
- W3196962213 hasAuthorship W3196962213A5010906829 @default.
- W3196962213 hasAuthorship W3196962213A5023130798 @default.
- W3196962213 hasAuthorship W3196962213A5032686951 @default.
- W3196962213 hasAuthorship W3196962213A5074337782 @default.
- W3196962213 hasConcept C106301342 @default.
- W3196962213 hasConcept C121332964 @default.
- W3196962213 hasConcept C124504099 @default.
- W3196962213 hasConcept C134306372 @default.
- W3196962213 hasConcept C153008295 @default.
- W3196962213 hasConcept C153180895 @default.
- W3196962213 hasConcept C154945302 @default.
- W3196962213 hasConcept C160633673 @default.
- W3196962213 hasConcept C167981619 @default.
- W3196962213 hasConcept C177264268 @default.
- W3196962213 hasConcept C185592680 @default.
- W3196962213 hasConcept C199360897 @default.
- W3196962213 hasConcept C2524010 @default.
- W3196962213 hasConcept C2776036281 @default.
- W3196962213 hasConcept C2779735895 @default.
- W3196962213 hasConcept C2780827179 @default.
- W3196962213 hasConcept C31972630 @default.
- W3196962213 hasConcept C33923547 @default.
- W3196962213 hasConcept C41008148 @default.
- W3196962213 hasConcept C50644808 @default.
- W3196962213 hasConcept C55493867 @default.
- W3196962213 hasConcept C62354387 @default.
- W3196962213 hasConcept C62520636 @default.
- W3196962213 hasConcept C89600930 @default.
- W3196962213 hasConceptScore W3196962213C106301342 @default.
- W3196962213 hasConceptScore W3196962213C121332964 @default.
- W3196962213 hasConceptScore W3196962213C124504099 @default.
- W3196962213 hasConceptScore W3196962213C134306372 @default.
- W3196962213 hasConceptScore W3196962213C153008295 @default.
- W3196962213 hasConceptScore W3196962213C153180895 @default.
- W3196962213 hasConceptScore W3196962213C154945302 @default.
- W3196962213 hasConceptScore W3196962213C160633673 @default.
- W3196962213 hasConceptScore W3196962213C167981619 @default.
- W3196962213 hasConceptScore W3196962213C177264268 @default.
- W3196962213 hasConceptScore W3196962213C185592680 @default.
- W3196962213 hasConceptScore W3196962213C199360897 @default.
- W3196962213 hasConceptScore W3196962213C2524010 @default.