Matches in SemOpenAlex for { <https://semopenalex.org/work/W3197002244> ?p ?o ?g. }
- W3197002244 endingPage "106358" @default.
- W3197002244 startingPage "106358" @default.
- W3197002244 abstract "Background and Objective: Atrial fibrillation (AF) is the most prevalent arrhythmia, which increases the mortality of several complications. The use of wearable devices to detect atrial fibrillation is currently attracting a great deal of attention. Patients use wearable devices to continuously collect individual ECG signals and transmit them to the cloud for diagnosis. However, the ECG acquisition and transmission of wearable devices consumes a lot of energy. In order to solve this problem, some scholars have skipped the complex reconstruction process of compressed ECG signals and directly classified the compressed ECG signals, but the AF recognition rate is not high by this method. There is no explanation as to why the compressed ECG signals can be used for AF detection. Methods: Firstly, a simple deterministic measurement matrix (SDMM) is used to perform random projection operation on the ECG signals to complete the compression. Then, we use the transpose of the SDMM to perform transpose projection operation on the compressed signals in the cloud to obtain the approximate signals. We verify the similarity between the approximate ECG signal and the original ECG signal to explain why the compressed ECG signals are effective in AF detection. Finally, the Transposed Projection - Convolutional Neural Network (TP-CNN) is used to effectively detect AF on the obtained approximate ECG signals. Our proposed method is validated in the MIT-BIH AFDB. Results: The experimental results show that when compression ratios (CRs) are from 2 to 10, the average Pearson correlation coefficients between the approximate signals and the original signals are from 0.9867 to 0.8326, the average cosine similarities between the four frequency domain-based HRV features (including mean RR, RMSSD, SDNN and R density) are from 1.00 to 0.9958, from 1.00 to 0.9959, from 0.9978 to 0.8619 and from 0.9982 to 0.8707, respectively. Furthermore, when CR=10 (ECG was compressed to 1/10 of the original signal), the accuracy, specificity, f1 score and matthews correlation coefficient for AF detection of approximate signals were 99.32%, 99.43%, 99.14% and 98.57%, respectively. Conclusion: Our proposed method illustrates the approximate signals have significant characteristics of the original signals and they are valid to classify the approximate signals. Meanwhile, comparing with the state-of-the-art methods, TP-CNN exceeded the results of the method for compressed signals and were also competitive compared with the classification results of the original signals, and is a promising method for AF detection in wearable application scenarios." @default.
- W3197002244 created "2021-09-13" @default.
- W3197002244 creator A5007337398 @default.
- W3197002244 creator A5034892488 @default.
- W3197002244 creator A5039105930 @default.
- W3197002244 creator A5047508877 @default.
- W3197002244 creator A5070550862 @default.
- W3197002244 date "2021-10-01" @default.
- W3197002244 modified "2023-10-15" @default.
- W3197002244 title "TP-CNN: A Detection Method for atrial fibrillation based on transposed projection signals with compressed sensed ECG" @default.
- W3197002244 cites W1947282229 @default.
- W3197002244 cites W1982365250 @default.
- W3197002244 cites W1992556963 @default.
- W3197002244 cites W2020654727 @default.
- W3197002244 cites W2041046019 @default.
- W3197002244 cites W2041524645 @default.
- W3197002244 cites W2050781067 @default.
- W3197002244 cites W2111414067 @default.
- W3197002244 cites W2121724000 @default.
- W3197002244 cites W2123339414 @default.
- W3197002244 cites W2129131372 @default.
- W3197002244 cites W2134207998 @default.
- W3197002244 cites W2145096794 @default.
- W3197002244 cites W2147018083 @default.
- W3197002244 cites W2162586165 @default.
- W3197002244 cites W2169382889 @default.
- W3197002244 cites W2334143870 @default.
- W3197002244 cites W2597945433 @default.
- W3197002244 cites W2621205740 @default.
- W3197002244 cites W2621311923 @default.
- W3197002244 cites W2760392818 @default.
- W3197002244 cites W2771148491 @default.
- W3197002244 cites W2794923494 @default.
- W3197002244 cites W2808714760 @default.
- W3197002244 cites W2884795774 @default.
- W3197002244 cites W2887643731 @default.
- W3197002244 cites W2888509599 @default.
- W3197002244 cites W2901956291 @default.
- W3197002244 cites W2910761179 @default.
- W3197002244 cites W2969967921 @default.
- W3197002244 cites W2974415621 @default.
- W3197002244 cites W2991792991 @default.
- W3197002244 cites W2997578981 @default.
- W3197002244 cites W2999309192 @default.
- W3197002244 cites W3006827515 @default.
- W3197002244 cites W3009022824 @default.
- W3197002244 cites W3024009950 @default.
- W3197002244 cites W3033279374 @default.
- W3197002244 cites W3033812098 @default.
- W3197002244 cites W3039313173 @default.
- W3197002244 cites W3042250083 @default.
- W3197002244 cites W3084428953 @default.
- W3197002244 cites W3090870848 @default.
- W3197002244 cites W3093397767 @default.
- W3197002244 cites W3099916295 @default.
- W3197002244 cites W3102346569 @default.
- W3197002244 cites W4250955649 @default.
- W3197002244 cites W3029466495 @default.
- W3197002244 doi "https://doi.org/10.1016/j.cmpb.2021.106358" @default.
- W3197002244 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34478912" @default.
- W3197002244 hasPublicationYear "2021" @default.
- W3197002244 type Work @default.
- W3197002244 sameAs 3197002244 @default.
- W3197002244 citedByCount "10" @default.
- W3197002244 countsByYear W31970022442022 @default.
- W3197002244 countsByYear W31970022442023 @default.
- W3197002244 crossrefType "journal-article" @default.
- W3197002244 hasAuthorship W3197002244A5007337398 @default.
- W3197002244 hasAuthorship W3197002244A5034892488 @default.
- W3197002244 hasAuthorship W3197002244A5039105930 @default.
- W3197002244 hasAuthorship W3197002244A5047508877 @default.
- W3197002244 hasAuthorship W3197002244A5070550862 @default.
- W3197002244 hasConcept C103278499 @default.
- W3197002244 hasConcept C11413529 @default.
- W3197002244 hasConcept C115961682 @default.
- W3197002244 hasConcept C124851039 @default.
- W3197002244 hasConcept C153180895 @default.
- W3197002244 hasConcept C154945302 @default.
- W3197002244 hasConcept C199360897 @default.
- W3197002244 hasConcept C2779843651 @default.
- W3197002244 hasConcept C31972630 @default.
- W3197002244 hasConcept C41008148 @default.
- W3197002244 hasConcept C57493831 @default.
- W3197002244 hasConcept C81363708 @default.
- W3197002244 hasConceptScore W3197002244C103278499 @default.
- W3197002244 hasConceptScore W3197002244C11413529 @default.
- W3197002244 hasConceptScore W3197002244C115961682 @default.
- W3197002244 hasConceptScore W3197002244C124851039 @default.
- W3197002244 hasConceptScore W3197002244C153180895 @default.
- W3197002244 hasConceptScore W3197002244C154945302 @default.
- W3197002244 hasConceptScore W3197002244C199360897 @default.
- W3197002244 hasConceptScore W3197002244C2779843651 @default.
- W3197002244 hasConceptScore W3197002244C31972630 @default.
- W3197002244 hasConceptScore W3197002244C41008148 @default.
- W3197002244 hasConceptScore W3197002244C57493831 @default.
- W3197002244 hasConceptScore W3197002244C81363708 @default.
- W3197002244 hasLocation W31970022441 @default.
- W3197002244 hasOpenAccess W3197002244 @default.