Matches in SemOpenAlex for { <https://semopenalex.org/work/W3197011246> ?p ?o ?g. }
- W3197011246 abstract "Machine learning methods have greatly changed science, engineering, finance, business, and other fields. Despite the tremendous accomplishments of machine learning and deep learning methods, many challenges still remain. In particular, the performance of machine learning methods is often severely affected in case of diverse data, usually associated with smaller data sets or data related to areas of study where the size of the data sets is constrained by the complexity and/or high cost of experiments. Moreover, data with limited labeled samples is a challenge to most learning approaches. In this paper, the aforementioned challenges are addressed by integrating graph-based frameworks, multiscale structure, modified and adapted optimization procedures and semi-supervised techniques. This results in two innovative multiscale Laplacian learning (MLL) approaches for machine learning tasks, such as data classification, and for tackling diverse data, data with limited samples and smaller data sets. The first approach, called multikernel manifold learning (MML), integrates manifold learning with multikernel information and solves a regularization problem consisting of a loss function and a warped kernel regularizer using multiscale graph Laplacians. The second approach, called the multiscale MBO (MMBO) method, introduces multiscale Laplacians to a modification of the famous classical Merriman-Bence-Osher (MBO) scheme, and makes use of fast solvers for finding the approximations to the extremal eigenvectors of the graph Laplacian. We demonstrate the performance of our methods experimentally on a variety of data sets, such as biological, text and image data, and compare them favorably to existing approaches." @default.
- W3197011246 created "2021-09-13" @default.
- W3197011246 creator A5019200619 @default.
- W3197011246 creator A5038778212 @default.
- W3197011246 creator A5080053274 @default.
- W3197011246 date "2021-09-08" @default.
- W3197011246 modified "2023-09-25" @default.
- W3197011246 title "Multiscale Laplacian Learning" @default.
- W3197011246 cites W1479807131 @default.
- W3197011246 cites W1491300635 @default.
- W3197011246 cites W1517289518 @default.
- W3197011246 cites W1524809867 @default.
- W3197011246 cites W1525297397 @default.
- W3197011246 cites W1630959083 @default.
- W3197011246 cites W1662382123 @default.
- W3197011246 cites W1664825283 @default.
- W3197011246 cites W1873332500 @default.
- W3197011246 cites W1883346539 @default.
- W3197011246 cites W1901616594 @default.
- W3197011246 cites W1969755245 @default.
- W3197011246 cites W1979089718 @default.
- W3197011246 cites W1990238127 @default.
- W3197011246 cites W1998920956 @default.
- W3197011246 cites W2006624446 @default.
- W3197011246 cites W2009737642 @default.
- W3197011246 cites W2016202900 @default.
- W3197011246 cites W2017254234 @default.
- W3197011246 cites W2019288156 @default.
- W3197011246 cites W2021080560 @default.
- W3197011246 cites W2028704235 @default.
- W3197011246 cites W2042184006 @default.
- W3197011246 cites W2042226984 @default.
- W3197011246 cites W2104290444 @default.
- W3197011246 cites W2106668826 @default.
- W3197011246 cites W2107008379 @default.
- W3197011246 cites W2115789358 @default.
- W3197011246 cites W2116810533 @default.
- W3197011246 cites W2119821739 @default.
- W3197011246 cites W2121196976 @default.
- W3197011246 cites W2122837498 @default.
- W3197011246 cites W2126922884 @default.
- W3197011246 cites W2132914434 @default.
- W3197011246 cites W2134767644 @default.
- W3197011246 cites W2139140682 @default.
- W3197011246 cites W2139823104 @default.
- W3197011246 cites W2140408177 @default.
- W3197011246 cites W2145494108 @default.
- W3197011246 cites W2148029428 @default.
- W3197011246 cites W2148534792 @default.
- W3197011246 cites W2148852318 @default.
- W3197011246 cites W2152034960 @default.
- W3197011246 cites W2152322845 @default.
- W3197011246 cites W2154455818 @default.
- W3197011246 cites W2159937720 @default.
- W3197011246 cites W2161072217 @default.
- W3197011246 cites W2166338096 @default.
- W3197011246 cites W2171147867 @default.
- W3197011246 cites W2171522835 @default.
- W3197011246 cites W2226832866 @default.
- W3197011246 cites W2260382512 @default.
- W3197011246 cites W2293194425 @default.
- W3197011246 cites W2319358180 @default.
- W3197011246 cites W2345837149 @default.
- W3197011246 cites W240764945 @default.
- W3197011246 cites W2407712691 @default.
- W3197011246 cites W2408701322 @default.
- W3197011246 cites W2519887557 @default.
- W3197011246 cites W2540627216 @default.
- W3197011246 cites W2561849210 @default.
- W3197011246 cites W2568988948 @default.
- W3197011246 cites W2570179224 @default.
- W3197011246 cites W2578312891 @default.
- W3197011246 cites W2579597427 @default.
- W3197011246 cites W2592808544 @default.
- W3197011246 cites W2598739535 @default.
- W3197011246 cites W2604723872 @default.
- W3197011246 cites W2610142609 @default.
- W3197011246 cites W2619808280 @default.
- W3197011246 cites W2725970836 @default.
- W3197011246 cites W2733638363 @default.
- W3197011246 cites W2741292700 @default.
- W3197011246 cites W2758611985 @default.
- W3197011246 cites W2765972116 @default.
- W3197011246 cites W2787740662 @default.
- W3197011246 cites W2788284887 @default.
- W3197011246 cites W2789186812 @default.
- W3197011246 cites W2800722845 @default.
- W3197011246 cites W2808122494 @default.
- W3197011246 cites W2883540729 @default.
- W3197011246 cites W2900412063 @default.
- W3197011246 cites W2902390267 @default.
- W3197011246 cites W2913691358 @default.
- W3197011246 cites W2946439115 @default.
- W3197011246 cites W2951676304 @default.
- W3197011246 cites W2963456618 @default.
- W3197011246 cites W2963833291 @default.
- W3197011246 cites W2963969719 @default.
- W3197011246 cites W2964051675 @default.
- W3197011246 cites W2969266941 @default.
- W3197011246 cites W2979805229 @default.