Matches in SemOpenAlex for { <https://semopenalex.org/work/W3197078264> ?p ?o ?g. }
Showing items 1 to 52 of
52
with 100 items per page.
- W3197078264 endingPage "457" @default.
- W3197078264 startingPage "309" @default.
- W3197078264 abstract "Over the past few decades, we have witnessed a huge increase in the use of multimedia content on the internet, for multiple applications ranging from innocuous to critical ones. This development has led to threats posed when content can be manipulated/used for malicious purposes. For example, fake media can be used to drive personal opinions, or for criminal activities such as terrorist propaganda and cyberbullying. This research and practice activity gave rise to the creation of the multimedia forensics field. In this survey, the latest trends and deep-learning-based techniques for multimedia forensics are introduced, in both architectural and data-processing. Firstly, different techniques used to manipulate content are presented, followed by image and video forgery techniques. Thereafter, deep learning methods for source identification and recent solutions for deepfake detection are covered. Datasets and evaluation metrics are included, and conclusions are presented. The publication is intended for researchers, students and professionals active in the fields of Deep Learning and Multimedia Forensics." @default.
- W3197078264 created "2021-09-13" @default.
- W3197078264 creator A5000949710 @default.
- W3197078264 creator A5030121038 @default.
- W3197078264 creator A5066029199 @default.
- W3197078264 creator A5081098143 @default.
- W3197078264 date "2021-01-01" @default.
- W3197078264 modified "2023-10-17" @default.
- W3197078264 title "Deep Learning for Multimedia Forensics" @default.
- W3197078264 cites W2124695272 @default.
- W3197078264 cites W3102373040 @default.
- W3197078264 cites W3133672610 @default.
- W3197078264 doi "https://doi.org/10.1561/0600000096" @default.
- W3197078264 hasPublicationYear "2021" @default.
- W3197078264 type Work @default.
- W3197078264 sameAs 3197078264 @default.
- W3197078264 citedByCount "9" @default.
- W3197078264 countsByYear W31970782642021 @default.
- W3197078264 countsByYear W31970782642022 @default.
- W3197078264 countsByYear W31970782642023 @default.
- W3197078264 crossrefType "journal-article" @default.
- W3197078264 hasAuthorship W3197078264A5000949710 @default.
- W3197078264 hasAuthorship W3197078264A5030121038 @default.
- W3197078264 hasAuthorship W3197078264A5066029199 @default.
- W3197078264 hasAuthorship W3197078264A5081098143 @default.
- W3197078264 hasBestOaLocation W31970782641 @default.
- W3197078264 hasConcept C41008148 @default.
- W3197078264 hasConcept C49774154 @default.
- W3197078264 hasConceptScore W3197078264C41008148 @default.
- W3197078264 hasConceptScore W3197078264C49774154 @default.
- W3197078264 hasIssue "4" @default.
- W3197078264 hasLocation W31970782641 @default.
- W3197078264 hasLocation W31970782642 @default.
- W3197078264 hasOpenAccess W3197078264 @default.
- W3197078264 hasPrimaryLocation W31970782641 @default.
- W3197078264 hasRelatedWork W1522515376 @default.
- W3197078264 hasRelatedWork W2030250808 @default.
- W3197078264 hasRelatedWork W2355862304 @default.
- W3197078264 hasRelatedWork W2356108042 @default.
- W3197078264 hasRelatedWork W2376796979 @default.
- W3197078264 hasRelatedWork W2379285345 @default.
- W3197078264 hasRelatedWork W2379418341 @default.
- W3197078264 hasRelatedWork W2380054981 @default.
- W3197078264 hasRelatedWork W2393110101 @default.
- W3197078264 hasRelatedWork W4239328682 @default.
- W3197078264 hasVolume "12" @default.
- W3197078264 isParatext "false" @default.
- W3197078264 isRetracted "false" @default.
- W3197078264 magId "3197078264" @default.
- W3197078264 workType "article" @default.