Matches in SemOpenAlex for { <https://semopenalex.org/work/W3197078573> ?p ?o ?g. }
- W3197078573 endingPage "122871" @default.
- W3197078573 startingPage "122855" @default.
- W3197078573 abstract "Many researchers are inspired by studying Speech Emotion Recognition (SER) because it is considered as a key effort in Human-Computer Interaction (HCI). The main focus of this work is to design a model for emotion recognition from speech, which has plenty of challenges within it. Due to the time series and sparse nature of emotion in speech, we have adopted a multivariate time series feature representation of the input data. The work has also adopted the Echo State Network (ESN) which includes reservoir computing as a special case of the Recurrent Neural Network (RNN) to avoid model complexity because of its untrained and sparse nature when mapping the features into a higher dimensional space. Additionally, we applied dimensionality reduction since it offers significant computational advantages by using Sparse Random Projection (SRP). Late fusion of bidirectionality input has been applied to capture additional information independently of the input data. The experiments for speaker-independent and/or speaker-dependent were performed on four common speech emotion datasets which are Emo-DB, SAVEE, RAVDESS, and FAU Aibo Emotion Corpus. The results show that the designed model outperforms the state-of-the-art with a cheaper computation cost." @default.
- W3197078573 created "2021-09-13" @default.
- W3197078573 creator A5050395528 @default.
- W3197078573 creator A5063587446 @default.
- W3197078573 creator A5079190137 @default.
- W3197078573 date "2021-01-01" @default.
- W3197078573 modified "2023-10-16" @default.
- W3197078573 title "Speech Emotion Recognition by Late Fusion for Bidirectional Reservoir Computing With Random Projection" @default.
- W3197078573 cites W119965371 @default.
- W3197078573 cites W1559788381 @default.
- W3197078573 cites W2003837801 @default.
- W3197078573 cites W2011071871 @default.
- W3197078573 cites W2041836310 @default.
- W3197078573 cites W2071318599 @default.
- W3197078573 cites W2085662862 @default.
- W3197078573 cites W2087618018 @default.
- W3197078573 cites W2095176743 @default.
- W3197078573 cites W2113765125 @default.
- W3197078573 cites W2118706537 @default.
- W3197078573 cites W2171865010 @default.
- W3197078573 cites W2294916050 @default.
- W3197078573 cites W2295142501 @default.
- W3197078573 cites W2473420485 @default.
- W3197078573 cites W2510434276 @default.
- W3197078573 cites W2558531213 @default.
- W3197078573 cites W2592702372 @default.
- W3197078573 cites W2717346897 @default.
- W3197078573 cites W2736127050 @default.
- W3197078573 cites W2762084293 @default.
- W3197078573 cites W2777468850 @default.
- W3197078573 cites W2778073151 @default.
- W3197078573 cites W2783274584 @default.
- W3197078573 cites W2794103404 @default.
- W3197078573 cites W2800840848 @default.
- W3197078573 cites W2803193013 @default.
- W3197078573 cites W2885005742 @default.
- W3197078573 cites W2896596895 @default.
- W3197078573 cites W2900791251 @default.
- W3197078573 cites W2904938641 @default.
- W3197078573 cites W2944523343 @default.
- W3197078573 cites W2951442257 @default.
- W3197078573 cites W2952136840 @default.
- W3197078573 cites W2956824775 @default.
- W3197078573 cites W2959133507 @default.
- W3197078573 cites W2964010366 @default.
- W3197078573 cites W2970737019 @default.
- W3197078573 cites W2975924256 @default.
- W3197078573 cites W2980587061 @default.
- W3197078573 cites W2980998114 @default.
- W3197078573 cites W3004742246 @default.
- W3197078573 cites W3007558004 @default.
- W3197078573 cites W3008039831 @default.
- W3197078573 cites W3016962243 @default.
- W3197078573 cites W3019821141 @default.
- W3197078573 cites W3022013598 @default.
- W3197078573 cites W3022431777 @default.
- W3197078573 cites W3025283630 @default.
- W3197078573 cites W3038427506 @default.
- W3197078573 cites W3058788517 @default.
- W3197078573 cites W3092477410 @default.
- W3197078573 cites W3095612572 @default.
- W3197078573 cites W3097274210 @default.
- W3197078573 cites W3104193280 @default.
- W3197078573 cites W3124875196 @default.
- W3197078573 cites W3129285739 @default.
- W3197078573 cites W3138598836 @default.
- W3197078573 cites W3145643603 @default.
- W3197078573 cites W1511141949 @default.
- W3197078573 doi "https://doi.org/10.1109/access.2021.3107858" @default.
- W3197078573 hasPublicationYear "2021" @default.
- W3197078573 type Work @default.
- W3197078573 sameAs 3197078573 @default.
- W3197078573 citedByCount "9" @default.
- W3197078573 countsByYear W31970785732022 @default.
- W3197078573 countsByYear W31970785732023 @default.
- W3197078573 crossrefType "journal-article" @default.
- W3197078573 hasAuthorship W3197078573A5050395528 @default.
- W3197078573 hasAuthorship W3197078573A5063587446 @default.
- W3197078573 hasAuthorship W3197078573A5079190137 @default.
- W3197078573 hasBestOaLocation W31970785731 @default.
- W3197078573 hasConcept C11413529 @default.
- W3197078573 hasConcept C135796866 @default.
- W3197078573 hasConcept C138885662 @default.
- W3197078573 hasConcept C147168706 @default.
- W3197078573 hasConcept C154945302 @default.
- W3197078573 hasConcept C158525013 @default.
- W3197078573 hasConcept C169258074 @default.
- W3197078573 hasConcept C2777438025 @default.
- W3197078573 hasConcept C28490314 @default.
- W3197078573 hasConcept C41008148 @default.
- W3197078573 hasConcept C41895202 @default.
- W3197078573 hasConcept C50644808 @default.
- W3197078573 hasConcept C57493831 @default.
- W3197078573 hasConceptScore W3197078573C11413529 @default.
- W3197078573 hasConceptScore W3197078573C135796866 @default.
- W3197078573 hasConceptScore W3197078573C138885662 @default.
- W3197078573 hasConceptScore W3197078573C147168706 @default.
- W3197078573 hasConceptScore W3197078573C154945302 @default.