Matches in SemOpenAlex for { <https://semopenalex.org/work/W3197081707> ?p ?o ?g. }
- W3197081707 endingPage "831" @default.
- W3197081707 startingPage "819" @default.
- W3197081707 abstract "Major technologies for metal ion recovery from water and wastewater include chemical precipitation, membrane filtration, adsorption, and electrochemical separation. Recent studies have focused on membrane, adsorption, and electrochemical methods, sophisticating them to obtain high selectivity and recovery. Membrane filtration plays an important role in separating monovalent and divalent metal ions. Metal–organic frameworks (MOFs), covalent organic frameworks (COFs), and porous-organic polymers (POPs) have recently been studied to separate a specific metal ion selectively. Electrochemical methods are critical and useful options to make best use of adsorption because electrochemical power can strengthen the recyclability and stability of adsorbents. Technologies for selective metal ion separation from water and wastewater are currently attracting strong research interest as a pathway to greater sustainability. The chemistry of metal ion separation processes is critical for understanding the mechanisms of selectivity and making the technologies viable. This paper discusses current advances and challenges in metal ion separation technologies from chemical points of view and proposes how they should be approached in the future. Technologies for selective metal ion separation from water and wastewater are currently attracting strong research interest as a pathway to greater sustainability. The chemistry of metal ion separation processes is critical for understanding the mechanisms of selectivity and making the technologies viable. This paper discusses current advances and challenges in metal ion separation technologies from chemical points of view and proposes how they should be approached in the future. porous materials adsorb contaminants. Kinetics and uptake are determined by its internal structure and composition. chemicals (e.g., sulfide and hydroxide reagents) react with metal ions to form insoluble precipitates, which are then separated from the water by sedimentation or filtration. target contaminants and resources include water, gases, salts, metals, and organic compounds, which are separated from the aqueous phase to reduce environmental impacts or to be recycled and used as valuable resources. a class of materials that only involve light organic elements (C, N, O, B, and Si) through strong covalent bonds (B−O, C−N, B−N, and B−O−Si). COFs have emerged as an important class of porous materials, with the advantages of designed structures, tunable pore size, and functionality. charge controlled electrodes can capture and release contaminants. Design of chemical specificity between electrodes and contaminants is the key to performance. a thermally driven process in which a hydrophobic porous membrane separates vapor from a warm liquid solution stream. The hydrophobicity of the membrane prevents liquid passage through the pores while allowing the passage of solvent vapor. pressure drives water through pores in a membrane, separating particles larger than the pores. This approach is most effective when the particles are sufficiently large. a class of compounds made by assembling inorganic units and organic linkers that form one-, two-, or three-dimensional structures. MOFs are often porous polymers. noncrystalline, but still highly porous and stable materials. More diverse synthetic coupling reactions, including Sonogashira−Hagihara, Suzuki−Miyaura, Yamamoto, or Eglinton couplings are used to make high-performance POPs with additional thiol chelating groups. involve the transfer of electrons and the subsequent oxidation or reduction of a compound." @default.
- W3197081707 created "2021-09-13" @default.
- W3197081707 creator A5011878557 @default.
- W3197081707 creator A5019610054 @default.
- W3197081707 creator A5028704968 @default.
- W3197081707 creator A5030094864 @default.
- W3197081707 creator A5046348268 @default.
- W3197081707 creator A5052039213 @default.
- W3197081707 creator A5053784739 @default.
- W3197081707 creator A5056726834 @default.
- W3197081707 creator A5078847967 @default.
- W3197081707 creator A5084204027 @default.
- W3197081707 date "2021-10-01" @default.
- W3197081707 modified "2023-10-18" @default.
- W3197081707 title "Advances and challenges in metal ion separation from water" @default.
- W3197081707 cites W1540697629 @default.
- W3197081707 cites W1966660646 @default.
- W3197081707 cites W1968011757 @default.
- W3197081707 cites W1970820491 @default.
- W3197081707 cites W1973903418 @default.
- W3197081707 cites W1988090168 @default.
- W3197081707 cites W1989896216 @default.
- W3197081707 cites W1996998725 @default.
- W3197081707 cites W2001057534 @default.
- W3197081707 cites W2008361132 @default.
- W3197081707 cites W2009529611 @default.
- W3197081707 cites W2010721462 @default.
- W3197081707 cites W2016334396 @default.
- W3197081707 cites W2018906839 @default.
- W3197081707 cites W2025235723 @default.
- W3197081707 cites W2025869269 @default.
- W3197081707 cites W2038757656 @default.
- W3197081707 cites W2041781567 @default.
- W3197081707 cites W2044369290 @default.
- W3197081707 cites W2051127469 @default.
- W3197081707 cites W2052468302 @default.
- W3197081707 cites W2056542561 @default.
- W3197081707 cites W2058866732 @default.
- W3197081707 cites W2059338496 @default.
- W3197081707 cites W2067621778 @default.
- W3197081707 cites W2077741438 @default.
- W3197081707 cites W2082912726 @default.
- W3197081707 cites W2088820729 @default.
- W3197081707 cites W2090903502 @default.
- W3197081707 cites W2091161882 @default.
- W3197081707 cites W2113536011 @default.
- W3197081707 cites W2117042596 @default.
- W3197081707 cites W2117150409 @default.
- W3197081707 cites W2149052416 @default.
- W3197081707 cites W2158054403 @default.
- W3197081707 cites W2162167089 @default.
- W3197081707 cites W2279533943 @default.
- W3197081707 cites W2281827983 @default.
- W3197081707 cites W2284687880 @default.
- W3197081707 cites W2304963923 @default.
- W3197081707 cites W2336828341 @default.
- W3197081707 cites W2412624167 @default.
- W3197081707 cites W2426882525 @default.
- W3197081707 cites W2520707646 @default.
- W3197081707 cites W2528974645 @default.
- W3197081707 cites W2531928259 @default.
- W3197081707 cites W2580106504 @default.
- W3197081707 cites W2588812077 @default.
- W3197081707 cites W2591018342 @default.
- W3197081707 cites W2596000382 @default.
- W3197081707 cites W2606763916 @default.
- W3197081707 cites W2624950702 @default.
- W3197081707 cites W2725570488 @default.
- W3197081707 cites W2732149930 @default.
- W3197081707 cites W2740237600 @default.
- W3197081707 cites W2750135403 @default.
- W3197081707 cites W2765431835 @default.
- W3197081707 cites W2771998501 @default.
- W3197081707 cites W2778498133 @default.
- W3197081707 cites W2782168734 @default.
- W3197081707 cites W2789790695 @default.
- W3197081707 cites W2791266900 @default.
- W3197081707 cites W2791514988 @default.
- W3197081707 cites W2794494016 @default.
- W3197081707 cites W2794527386 @default.
- W3197081707 cites W2802122925 @default.
- W3197081707 cites W2802167610 @default.
- W3197081707 cites W2802827444 @default.
- W3197081707 cites W2896751644 @default.
- W3197081707 cites W2899403632 @default.
- W3197081707 cites W2899456625 @default.
- W3197081707 cites W2900224875 @default.
- W3197081707 cites W2900735400 @default.
- W3197081707 cites W2904568400 @default.
- W3197081707 cites W2912834130 @default.
- W3197081707 cites W2916252188 @default.
- W3197081707 cites W2925643215 @default.
- W3197081707 cites W2948816145 @default.
- W3197081707 cites W2949353672 @default.
- W3197081707 cites W2954591269 @default.
- W3197081707 cites W2954605401 @default.
- W3197081707 cites W2965010275 @default.
- W3197081707 cites W2976447258 @default.