Matches in SemOpenAlex for { <https://semopenalex.org/work/W3197096512> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W3197096512 endingPage "5416" @default.
- W3197096512 startingPage "5407" @default.
- W3197096512 abstract "Wi-Fi fingerprint-based indoor localization is one of the most practical localization methods, which does not require extra infrastructure and special hardware. However, we need to acquire a dataset with a high-density dataset in the target environment in this framework. To overcome the data acquisition cost problem, we propose a brand new data augmentation for Wi-Fi indoor localization named Between-Location data augmentation (BL data augmentation). We generate the fingerprint data for the whole target environment with high density by only using the sparsely sampled data. Between-Class learning, which is the origin of BL data augmentation and the latest powerful data augmentation method for sound recognition and image processing, mixes two data linearly with normalization; however, this mixing does not make sense in indoor localization because mixed fingerprint has no meaning and the label of indoor localization is not categorical information but physically correlated information. To overcome these two problems, we propose the generative model based on neural networks installed the physical relationship of labels and Wi-Fi fingerprint property. BL data augmentation enables us to reduce data sampled locations while keeping the localization accuracy even if some target locations have no data. From the experimental results, indoor localization methods with BL data augmentation outperform the state-of-the-art data augmentation method on several indoor localization models, whatever the data collection location is dense or sparse. Moreover, the localization with BL data augmentation using 10 % sampled location achieves the same accuracy with localization without data augmentation using all sampled locations." @default.
- W3197096512 created "2021-09-13" @default.
- W3197096512 creator A5032839697 @default.
- W3197096512 creator A5073480671 @default.
- W3197096512 date "2022-03-15" @default.
- W3197096512 modified "2023-09-27" @default.
- W3197096512 title "Robustifying Wi-Fi Localization by Between-Location Data Augmentation" @default.
- W3197096512 cites W1490921409 @default.
- W3197096512 cites W1787022441 @default.
- W3197096512 cites W1981831056 @default.
- W3197096512 cites W1983301216 @default.
- W3197096512 cites W1997079297 @default.
- W3197096512 cites W2024796780 @default.
- W3197096512 cites W2036946260 @default.
- W3197096512 cites W2054602086 @default.
- W3197096512 cites W2105308437 @default.
- W3197096512 cites W2148482829 @default.
- W3197096512 cites W2156163116 @default.
- W3197096512 cites W2170102584 @default.
- W3197096512 cites W2518052614 @default.
- W3197096512 cites W2552265749 @default.
- W3197096512 cites W2755435363 @default.
- W3197096512 cites W2755937803 @default.
- W3197096512 cites W2755982260 @default.
- W3197096512 cites W2756340466 @default.
- W3197096512 cites W2763697523 @default.
- W3197096512 cites W2766382441 @default.
- W3197096512 cites W2794857086 @default.
- W3197096512 cites W2914306386 @default.
- W3197096512 cites W2916031314 @default.
- W3197096512 cites W2963031676 @default.
- W3197096512 cites W2964219546 @default.
- W3197096512 cites W2991221840 @default.
- W3197096512 doi "https://doi.org/10.1109/jsen.2021.3106765" @default.
- W3197096512 hasPublicationYear "2022" @default.
- W3197096512 type Work @default.
- W3197096512 sameAs 3197096512 @default.
- W3197096512 citedByCount "3" @default.
- W3197096512 countsByYear W31970965122022 @default.
- W3197096512 countsByYear W31970965122023 @default.
- W3197096512 crossrefType "journal-article" @default.
- W3197096512 hasAuthorship W3197096512A5032839697 @default.
- W3197096512 hasAuthorship W3197096512A5073480671 @default.
- W3197096512 hasConcept C124101348 @default.
- W3197096512 hasConcept C136886441 @default.
- W3197096512 hasConcept C144024400 @default.
- W3197096512 hasConcept C153180895 @default.
- W3197096512 hasConcept C154945302 @default.
- W3197096512 hasConcept C19165224 @default.
- W3197096512 hasConcept C2777826928 @default.
- W3197096512 hasConcept C31972630 @default.
- W3197096512 hasConcept C41008148 @default.
- W3197096512 hasConceptScore W3197096512C124101348 @default.
- W3197096512 hasConceptScore W3197096512C136886441 @default.
- W3197096512 hasConceptScore W3197096512C144024400 @default.
- W3197096512 hasConceptScore W3197096512C153180895 @default.
- W3197096512 hasConceptScore W3197096512C154945302 @default.
- W3197096512 hasConceptScore W3197096512C19165224 @default.
- W3197096512 hasConceptScore W3197096512C2777826928 @default.
- W3197096512 hasConceptScore W3197096512C31972630 @default.
- W3197096512 hasConceptScore W3197096512C41008148 @default.
- W3197096512 hasIssue "6" @default.
- W3197096512 hasLocation W31970965121 @default.
- W3197096512 hasOpenAccess W3197096512 @default.
- W3197096512 hasPrimaryLocation W31970965121 @default.
- W3197096512 hasRelatedWork W1540444031 @default.
- W3197096512 hasRelatedWork W1586418132 @default.
- W3197096512 hasRelatedWork W1602413925 @default.
- W3197096512 hasRelatedWork W2004978530 @default.
- W3197096512 hasRelatedWork W2016839265 @default.
- W3197096512 hasRelatedWork W2026045458 @default.
- W3197096512 hasRelatedWork W2031869223 @default.
- W3197096512 hasRelatedWork W2102340963 @default.
- W3197096512 hasRelatedWork W2533072256 @default.
- W3197096512 hasRelatedWork W4220912900 @default.
- W3197096512 hasVolume "22" @default.
- W3197096512 isParatext "false" @default.
- W3197096512 isRetracted "false" @default.
- W3197096512 magId "3197096512" @default.
- W3197096512 workType "article" @default.