Matches in SemOpenAlex for { <https://semopenalex.org/work/W3197109085> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W3197109085 abstract "Abstract A decision-making system is one of the most important tools in data mining. The data mining field has become a forum where it is necessary to utilize users' interactions, decision-making processes and overall experience. Nowadays, e-learning is indeed a progressive method to provide online education in long-lasting terms, contrasting to the customary head-to-head process of educating with culture. Through e-learning, an ever-increasing number of learners have profited from different programs. Notwithstanding, the highly assorted variety of the students on the internet presents new difficulties to the conservative one-estimate fit-all learning systems, in which a solitary arrangement of learning assets is specified to the learners. The problems and limitations in well-known recommender systems are much variations in the expected absolute error, consuming more query processing time, and providing less accuracy in the final recommendation. The main objectives of this research are the design and analysis of a new transductive support vector machine-based hybrid personalized hybrid recommender for the machine learning public data sets. The learning experience has been achieved through the habits of the learners. This research designs some of the new strategies that are experimented with to improve the performance of a hybrid recommender. The modified one-source denoising approach is designed to preprocess the learner dataset. The modified anarchic society optimization strategy is designed to improve the performance measurements. The enhanced and generalized sequential pattern strategy is proposed to mine the sequential pattern of learners. The enhanced transductive support vector machine is developed to evaluate the extracted habits and interests. These new strategies analyze the confidential rate of learners and provide the best recommendation to the learners. The proposed generalized model is simulated on public datasets for machine learning such as movies, music, books, food, merchandise, healthcare, dating, scholarly paper, and open university learning recommendation. The experimental analysis concludes that the enhanced clustering strategy discovers clusters that are based on random size. The proposed recommendation strategies achieve better significant performance over the methods in terms of expected absolute error, accuracy, ranking score, recall, and precision measurements. The accuracy of the proposed datasets lies between 82 and 98%. The MAE metric lies between 5 and 19.2% for the simulated public datasets. The simulation results prove the proposed generalized recommender has a great strength to improve the quality and performance." @default.
- W3197109085 created "2021-09-13" @default.
- W3197109085 creator A5051770126 @default.
- W3197109085 creator A5062170443 @default.
- W3197109085 date "2021-09-04" @default.
- W3197109085 modified "2023-10-16" @default.
- W3197109085 title "Design and analysis of an efficient machine learning based hybrid recommendation system with enhanced density-based spatial clustering for digital e-learning applications" @default.
- W3197109085 cites W1576030471 @default.
- W3197109085 cites W1846956548 @default.
- W3197109085 cites W1969834152 @default.
- W3197109085 cites W1975170983 @default.
- W3197109085 cites W1985317711 @default.
- W3197109085 cites W2010993922 @default.
- W3197109085 cites W2036196708 @default.
- W3197109085 cites W2040800457 @default.
- W3197109085 cites W2128070164 @default.
- W3197109085 cites W2153441753 @default.
- W3197109085 cites W2162283255 @default.
- W3197109085 cites W2266058821 @default.
- W3197109085 cites W2596352504 @default.
- W3197109085 cites W2639904085 @default.
- W3197109085 cites W2754764546 @default.
- W3197109085 cites W2791327891 @default.
- W3197109085 cites W2803159672 @default.
- W3197109085 cites W2903997608 @default.
- W3197109085 cites W3007059900 @default.
- W3197109085 cites W3017111914 @default.
- W3197109085 cites W3017358845 @default.
- W3197109085 cites W3039946068 @default.
- W3197109085 cites W3124806927 @default.
- W3197109085 cites W4239647775 @default.
- W3197109085 cites W651773263 @default.
- W3197109085 doi "https://doi.org/10.1007/s40747-021-00509-4" @default.
- W3197109085 hasPublicationYear "2021" @default.
- W3197109085 type Work @default.
- W3197109085 sameAs 3197109085 @default.
- W3197109085 citedByCount "16" @default.
- W3197109085 countsByYear W31971090852021 @default.
- W3197109085 countsByYear W31971090852022 @default.
- W3197109085 countsByYear W31971090852023 @default.
- W3197109085 crossrefType "journal-article" @default.
- W3197109085 hasAuthorship W3197109085A5051770126 @default.
- W3197109085 hasAuthorship W3197109085A5062170443 @default.
- W3197109085 hasBestOaLocation W31971090851 @default.
- W3197109085 hasConcept C111919701 @default.
- W3197109085 hasConcept C119857082 @default.
- W3197109085 hasConcept C12267149 @default.
- W3197109085 hasConcept C124101348 @default.
- W3197109085 hasConcept C136197465 @default.
- W3197109085 hasConcept C154945302 @default.
- W3197109085 hasConcept C202444582 @default.
- W3197109085 hasConcept C33923547 @default.
- W3197109085 hasConcept C41008148 @default.
- W3197109085 hasConcept C557471498 @default.
- W3197109085 hasConcept C73555534 @default.
- W3197109085 hasConcept C9652623 @default.
- W3197109085 hasConcept C98045186 @default.
- W3197109085 hasConceptScore W3197109085C111919701 @default.
- W3197109085 hasConceptScore W3197109085C119857082 @default.
- W3197109085 hasConceptScore W3197109085C12267149 @default.
- W3197109085 hasConceptScore W3197109085C124101348 @default.
- W3197109085 hasConceptScore W3197109085C136197465 @default.
- W3197109085 hasConceptScore W3197109085C154945302 @default.
- W3197109085 hasConceptScore W3197109085C202444582 @default.
- W3197109085 hasConceptScore W3197109085C33923547 @default.
- W3197109085 hasConceptScore W3197109085C41008148 @default.
- W3197109085 hasConceptScore W3197109085C557471498 @default.
- W3197109085 hasConceptScore W3197109085C73555534 @default.
- W3197109085 hasConceptScore W3197109085C9652623 @default.
- W3197109085 hasConceptScore W3197109085C98045186 @default.
- W3197109085 hasLocation W31971090851 @default.
- W3197109085 hasOpenAccess W3197109085 @default.
- W3197109085 hasPrimaryLocation W31971090851 @default.
- W3197109085 hasRelatedWork W1996541855 @default.
- W3197109085 hasRelatedWork W2101819884 @default.
- W3197109085 hasRelatedWork W2616409981 @default.
- W3197109085 hasRelatedWork W2803710604 @default.
- W3197109085 hasRelatedWork W2937631562 @default.
- W3197109085 hasRelatedWork W2979979539 @default.
- W3197109085 hasRelatedWork W3127425528 @default.
- W3197109085 hasRelatedWork W3194539120 @default.
- W3197109085 hasRelatedWork W3195168932 @default.
- W3197109085 hasRelatedWork W4361795583 @default.
- W3197109085 isParatext "false" @default.
- W3197109085 isRetracted "false" @default.
- W3197109085 magId "3197109085" @default.
- W3197109085 workType "article" @default.