Matches in SemOpenAlex for { <https://semopenalex.org/work/W3197128176> ?p ?o ?g. }
- W3197128176 endingPage "1664" @default.
- W3197128176 startingPage "1642" @default.
- W3197128176 abstract "This article proposes sparse and easy-to-interpret proximate factors to approximate statistical latent factors. Latent factors in a large-dimensional factor model can be estimated by principal component analysis (PCA), but are usually hard to interpret. We obtain proximate factors that are easier to interpret by shrinking the PCA factor weights and setting them to zero except for the largest absolute ones. We show that proximate factors constructed with only 5%–10% of the data are usually sufficient to almost perfectly replicate the population and PCA factors without actually assuming a sparse structure in the weights or loadings. Using extreme value theory we explain why sparse proximate factors can be substitutes for non-sparse PCA factors. We derive analytical asymptotic bounds for the correlation of appropriately rotated proximate factors with the population factors. These bounds provide guidance on how to construct the proximate factors. In simulations and empirical analyses of financial portfolio and macroeconomic data, we illustrate that sparse proximate factors are close substitutes for PCA factors with average correlations of around 97.5%, while being interpretable." @default.
- W3197128176 created "2021-09-13" @default.
- W3197128176 creator A5036061838 @default.
- W3197128176 creator A5036333323 @default.
- W3197128176 date "2021-08-31" @default.
- W3197128176 modified "2023-10-10" @default.
- W3197128176 title "Interpretable Sparse Proximate Factors for Large Dimensions" @default.
- W3197128176 cites W1500657154 @default.
- W3197128176 cites W1573806138 @default.
- W3197128176 cites W1839044816 @default.
- W3197128176 cites W1975900269 @default.
- W3197128176 cites W1997320786 @default.
- W3197128176 cites W2000632882 @default.
- W3197128176 cites W2014165366 @default.
- W3197128176 cites W2029721016 @default.
- W3197128176 cites W2038601479 @default.
- W3197128176 cites W2040373108 @default.
- W3197128176 cites W2043440217 @default.
- W3197128176 cites W2071706689 @default.
- W3197128176 cites W2079563517 @default.
- W3197128176 cites W2113600901 @default.
- W3197128176 cites W2122825543 @default.
- W3197128176 cites W2134332047 @default.
- W3197128176 cites W2135046866 @default.
- W3197128176 cites W2141385698 @default.
- W3197128176 cites W2145962650 @default.
- W3197128176 cites W2157400927 @default.
- W3197128176 cites W2159706540 @default.
- W3197128176 cites W2164743749 @default.
- W3197128176 cites W2166215547 @default.
- W3197128176 cites W2168503902 @default.
- W3197128176 cites W2257263437 @default.
- W3197128176 cites W2586367507 @default.
- W3197128176 cites W2799643291 @default.
- W3197128176 cites W2891565894 @default.
- W3197128176 cites W2900466660 @default.
- W3197128176 cites W2938549779 @default.
- W3197128176 cites W3023737942 @default.
- W3197128176 cites W3023877248 @default.
- W3197128176 cites W3103757612 @default.
- W3197128176 cites W3105644508 @default.
- W3197128176 cites W3121287929 @default.
- W3197128176 cites W3121642665 @default.
- W3197128176 cites W3122402351 @default.
- W3197128176 cites W3122843312 @default.
- W3197128176 cites W3123167195 @default.
- W3197128176 cites W3123638141 @default.
- W3197128176 cites W3124477952 @default.
- W3197128176 cites W3124904104 @default.
- W3197128176 cites W3125239845 @default.
- W3197128176 cites W3125714952 @default.
- W3197128176 cites W3125965402 @default.
- W3197128176 cites W3126136988 @default.
- W3197128176 cites W3126612046 @default.
- W3197128176 cites W3160177966 @default.
- W3197128176 cites W4210284192 @default.
- W3197128176 doi "https://doi.org/10.1080/07350015.2021.1961786" @default.
- W3197128176 hasPublicationYear "2021" @default.
- W3197128176 type Work @default.
- W3197128176 sameAs 3197128176 @default.
- W3197128176 citedByCount "8" @default.
- W3197128176 countsByYear W31971281762021 @default.
- W3197128176 countsByYear W31971281762022 @default.
- W3197128176 countsByYear W31971281762023 @default.
- W3197128176 crossrefType "journal-article" @default.
- W3197128176 hasAuthorship W3197128176A5036061838 @default.
- W3197128176 hasAuthorship W3197128176A5036333323 @default.
- W3197128176 hasBestOaLocation W31971281762 @default.
- W3197128176 hasConcept C105795698 @default.
- W3197128176 hasConcept C10879293 @default.
- W3197128176 hasConcept C144024400 @default.
- W3197128176 hasConcept C149782125 @default.
- W3197128176 hasConcept C149923435 @default.
- W3197128176 hasConcept C153180895 @default.
- W3197128176 hasConcept C154945302 @default.
- W3197128176 hasConcept C27438332 @default.
- W3197128176 hasConcept C2780539549 @default.
- W3197128176 hasConcept C28826006 @default.
- W3197128176 hasConcept C2908647359 @default.
- W3197128176 hasConcept C31903555 @default.
- W3197128176 hasConcept C33923547 @default.
- W3197128176 hasConcept C41008148 @default.
- W3197128176 hasConcept C86803240 @default.
- W3197128176 hasConceptScore W3197128176C105795698 @default.
- W3197128176 hasConceptScore W3197128176C10879293 @default.
- W3197128176 hasConceptScore W3197128176C144024400 @default.
- W3197128176 hasConceptScore W3197128176C149782125 @default.
- W3197128176 hasConceptScore W3197128176C149923435 @default.
- W3197128176 hasConceptScore W3197128176C153180895 @default.
- W3197128176 hasConceptScore W3197128176C154945302 @default.
- W3197128176 hasConceptScore W3197128176C27438332 @default.
- W3197128176 hasConceptScore W3197128176C2780539549 @default.
- W3197128176 hasConceptScore W3197128176C28826006 @default.
- W3197128176 hasConceptScore W3197128176C2908647359 @default.
- W3197128176 hasConceptScore W3197128176C31903555 @default.
- W3197128176 hasConceptScore W3197128176C33923547 @default.
- W3197128176 hasConceptScore W3197128176C41008148 @default.
- W3197128176 hasConceptScore W3197128176C86803240 @default.