Matches in SemOpenAlex for { <https://semopenalex.org/work/W3197153445> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W3197153445 abstract "PreviousNext No AccessFirst International Meeting for Applied Geoscience & Energy Expanded AbstractsA recurrent neural network for ℓ1 anisotropic viscoelastic full-waveform inversion with high-order total variation regularizationAuthors: Tianze ZhangJian SunKristopher A. InnanenDaniel O. TradTianze ZhangUniversity of CalgarySearch for more papers by this author, Jian SunUniversity of CalgarySearch for more papers by this author, Kristopher A. InnanenThe Pennsylvania State UniversitySearch for more papers by this author, and Daniel O. TradUniversity of CalgarySearch for more papers by this authorhttps://doi.org/10.1190/segam2021-3594168.1 SectionsSupplemental MaterialAboutPDF/ePub ToolsAdd to favoritesDownload CitationsTrack CitationsPermissions ShareFacebookTwitterLinked InRedditEmail AbstractA theory-guided deep learning approach to full waveform inversion has features which make it increasingly relevant as we treat problems of greater and greater complexity (e.g., when number of parameter classes increases). Here, we design a recurrent neural network (RNN) for anisotropic viscoelastic full waveform inversion. Eight parameters are simultaneously inverted for, the elastic parameters C11, C13, C33, C44 and their corresponding attenuation parameters QC11, QC13, QC33, QC44. The RNN is built around the velocity-stress anisotropic viscoelastic wave equation. It is a convenient environment in which to compute medium property FWI updates, given a non self-adjoint wave operator, and when the objective function is not analytically differentiable, but some experimentation is required to determine best choices of optimization and regularization in this multi-parameter setting. An objective function based on the l1 norm with high-order total variation (TV) regularization is selected, and the numerical response of the network, given simulated data for a range of acquisition geometries, is examined. Given accurate starting models, we observe that the high-order TV regularization is adept at recovering sharp edges in model parameters. We also observe a significant improvement in parameter recovery given a combination of cross-well and surface data in comparison with surface acquisition.Keywords: machine learning, full-waveform inversion, viscoelastic, VTI, attenuationPermalink: https://doi.org/10.1190/segam2021-3594168.1FiguresReferencesRelatedDetails First International Meeting for Applied Geoscience & Energy Expanded AbstractsISSN (print):1052-3812 ISSN (online):1949-4645Copyright: 2021 Pages: 3561 publication data© 2021 Published in electronic format with permission by the Society of Exploration GeophysicistsPublisher:Society of Exploration Geophysicists HistoryPublished: 01 Sep 2021 CITATION INFORMATION Tianze Zhang, Jian Sun, Kristopher A. Innanen, and Daniel O. Trad, (2021), A recurrent neural network for ℓ1 anisotropic viscoelastic full-waveform inversion with high-order total variation regularization, SEG Technical Program Expanded Abstracts : 1374-1378. https://doi.org/10.1190/segam2021-3594168.1 Plain-Language Summary Keywordsmachine learningfull-waveform inversionviscoelasticVTIattenuationPDF DownloadLoading ..." @default.
- W3197153445 created "2021-09-13" @default.
- W3197153445 creator A5000256238 @default.
- W3197153445 creator A5004183775 @default.
- W3197153445 creator A5024863047 @default.
- W3197153445 creator A5031355441 @default.
- W3197153445 date "2021-09-01" @default.
- W3197153445 modified "2023-09-27" @default.
- W3197153445 title "A recurrent neural network for ℓ1 anisotropic viscoelastic full-waveform inversion with high-order total variation regularization" @default.
- W3197153445 cites W1985883290 @default.
- W3197153445 cites W2011439934 @default.
- W3197153445 cites W2081710957 @default.
- W3197153445 cites W2113987921 @default.
- W3197153445 cites W2243022125 @default.
- W3197153445 cites W2461136038 @default.
- W3197153445 cites W2462741451 @default.
- W3197153445 cites W2480916962 @default.
- W3197153445 cites W2495079893 @default.
- W3197153445 cites W2560178969 @default.
- W3197153445 cites W2983807332 @default.
- W3197153445 cites W3091722481 @default.
- W3197153445 doi "https://doi.org/10.1190/segam2021-3594168.1" @default.
- W3197153445 hasPublicationYear "2021" @default.
- W3197153445 type Work @default.
- W3197153445 sameAs 3197153445 @default.
- W3197153445 citedByCount "0" @default.
- W3197153445 crossrefType "proceedings-article" @default.
- W3197153445 hasAuthorship W3197153445A5000256238 @default.
- W3197153445 hasAuthorship W3197153445A5004183775 @default.
- W3197153445 hasAuthorship W3197153445A5024863047 @default.
- W3197153445 hasAuthorship W3197153445A5031355441 @default.
- W3197153445 hasConcept C11413529 @default.
- W3197153445 hasConcept C120665830 @default.
- W3197153445 hasConcept C121332964 @default.
- W3197153445 hasConcept C127313418 @default.
- W3197153445 hasConcept C147168706 @default.
- W3197153445 hasConcept C154945302 @default.
- W3197153445 hasConcept C165205528 @default.
- W3197153445 hasConcept C184652730 @default.
- W3197153445 hasConcept C186541917 @default.
- W3197153445 hasConcept C1893757 @default.
- W3197153445 hasConcept C197424946 @default.
- W3197153445 hasConcept C2776135515 @default.
- W3197153445 hasConcept C28826006 @default.
- W3197153445 hasConcept C33923547 @default.
- W3197153445 hasConcept C41008148 @default.
- W3197153445 hasConcept C50644808 @default.
- W3197153445 hasConcept C554190296 @default.
- W3197153445 hasConcept C76155785 @default.
- W3197153445 hasConcept C77928131 @default.
- W3197153445 hasConcept C85725439 @default.
- W3197153445 hasConcept C97355855 @default.
- W3197153445 hasConceptScore W3197153445C11413529 @default.
- W3197153445 hasConceptScore W3197153445C120665830 @default.
- W3197153445 hasConceptScore W3197153445C121332964 @default.
- W3197153445 hasConceptScore W3197153445C127313418 @default.
- W3197153445 hasConceptScore W3197153445C147168706 @default.
- W3197153445 hasConceptScore W3197153445C154945302 @default.
- W3197153445 hasConceptScore W3197153445C165205528 @default.
- W3197153445 hasConceptScore W3197153445C184652730 @default.
- W3197153445 hasConceptScore W3197153445C186541917 @default.
- W3197153445 hasConceptScore W3197153445C1893757 @default.
- W3197153445 hasConceptScore W3197153445C197424946 @default.
- W3197153445 hasConceptScore W3197153445C2776135515 @default.
- W3197153445 hasConceptScore W3197153445C28826006 @default.
- W3197153445 hasConceptScore W3197153445C33923547 @default.
- W3197153445 hasConceptScore W3197153445C41008148 @default.
- W3197153445 hasConceptScore W3197153445C50644808 @default.
- W3197153445 hasConceptScore W3197153445C554190296 @default.
- W3197153445 hasConceptScore W3197153445C76155785 @default.
- W3197153445 hasConceptScore W3197153445C77928131 @default.
- W3197153445 hasConceptScore W3197153445C85725439 @default.
- W3197153445 hasConceptScore W3197153445C97355855 @default.
- W3197153445 hasLocation W31971534451 @default.
- W3197153445 hasOpenAccess W3197153445 @default.
- W3197153445 hasPrimaryLocation W31971534451 @default.
- W3197153445 hasRelatedWork W1481454372 @default.
- W3197153445 hasRelatedWork W1990644190 @default.
- W3197153445 hasRelatedWork W2318693032 @default.
- W3197153445 hasRelatedWork W2320402022 @default.
- W3197153445 hasRelatedWork W2407256316 @default.
- W3197153445 hasRelatedWork W2911314931 @default.
- W3197153445 hasRelatedWork W3110859065 @default.
- W3197153445 hasRelatedWork W4291718260 @default.
- W3197153445 hasRelatedWork W4295308387 @default.
- W3197153445 hasRelatedWork W2088290547 @default.
- W3197153445 isParatext "false" @default.
- W3197153445 isRetracted "false" @default.
- W3197153445 magId "3197153445" @default.
- W3197153445 workType "article" @default.