Matches in SemOpenAlex for { <https://semopenalex.org/work/W3197181736> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W3197181736 endingPage "195" @default.
- W3197181736 startingPage "186" @default.
- W3197181736 abstract "Artificial neural networks play an important role in the modern world. Their main field of application is the tasks of recognition and processing of images, speech, as well as robotics and unmanned systems. The use of neural networks is associated with high computational costs. In part, it was this fact that held back their progress, and only with the advent of high-performance computing systems did the active development of this area begin. Nevertheless, the issue of speeding up the work of neural network algorithms is still relevant. One of the promising directions is the creation of analog implementations of artificial neural networks, since analog calculations are performed orders of magnitude faster than digital ones. The memristor acts as the basic element on which such systems are built. A memristor is a resistance, the conductivity of which depends on the total charge passed through it. Combining them into a matrix (crossbar) allows one layer of artificial synapses to be implemented at the hardware level. Traditionally, the STDP method based on Hebb’s rule has been used as an analog learning method. In this work, we are modeling a two-layer fully connected network with one layer of synapses. The memristive effect can manifest itself in different substances (mainly in different oxides), so it is important to understand how the characteristics of memristors will affect the parameters of the neural network. Two oxides are considered: titanium oxide (TiO 2 ) and hafnium oxide (HfO 2 ). For each oxide, a parametric identification of the corresponding mathematical model is performed to best fit the experimental data. The neural network is tuned depending on the oxide used and the process of training it to recognize five patterns is simulated." @default.
- W3197181736 created "2021-09-13" @default.
- W3197181736 creator A5029393626 @default.
- W3197181736 creator A5050482733 @default.
- W3197181736 creator A5064871604 @default.
- W3197181736 date "2020-11-10" @default.
- W3197181736 modified "2023-09-25" @default.
- W3197181736 title "Mathematical modeling of a self-learning neuromorphic network based on nanosized memristive elements with 1T1R crossbar architecture" @default.
- W3197181736 cites W1570411240 @default.
- W3197181736 cites W1578783943 @default.
- W3197181736 cites W2004823737 @default.
- W3197181736 cites W2007898123 @default.
- W3197181736 cites W2008901850 @default.
- W3197181736 cites W2013055927 @default.
- W3197181736 cites W2018774711 @default.
- W3197181736 cites W2110697514 @default.
- W3197181736 cites W2112181056 @default.
- W3197181736 cites W2134558891 @default.
- W3197181736 cites W2161330443 @default.
- W3197181736 cites W2311366534 @default.
- W3197181736 cites W2343717271 @default.
- W3197181736 cites W2773823047 @default.
- W3197181736 cites W2775771159 @default.
- W3197181736 cites W2782791387 @default.
- W3197181736 cites W2786366611 @default.
- W3197181736 cites W2794813599 @default.
- W3197181736 cites W2886614340 @default.
- W3197181736 cites W2923885230 @default.
- W3197181736 cites W2949371675 @default.
- W3197181736 cites W2962953132 @default.
- W3197181736 cites W2963013446 @default.
- W3197181736 cites W3106114372 @default.
- W3197181736 cites W3111271418 @default.
- W3197181736 cites W3196843723 @default.
- W3197181736 doi "https://doi.org/10.17073/1609-3577-2020-3-186-195" @default.
- W3197181736 hasPublicationYear "2020" @default.
- W3197181736 type Work @default.
- W3197181736 sameAs 3197181736 @default.
- W3197181736 citedByCount "2" @default.
- W3197181736 countsByYear W31971817362021 @default.
- W3197181736 countsByYear W31971817362023 @default.
- W3197181736 crossrefType "journal-article" @default.
- W3197181736 hasAuthorship W3197181736A5029393626 @default.
- W3197181736 hasAuthorship W3197181736A5050482733 @default.
- W3197181736 hasAuthorship W3197181736A5064871604 @default.
- W3197181736 hasBestOaLocation W31971817361 @default.
- W3197181736 hasConcept C113775141 @default.
- W3197181736 hasConcept C118524514 @default.
- W3197181736 hasConcept C127413603 @default.
- W3197181736 hasConcept C150072547 @default.
- W3197181736 hasConcept C151927369 @default.
- W3197181736 hasConcept C154945302 @default.
- W3197181736 hasConcept C24326235 @default.
- W3197181736 hasConcept C29984679 @default.
- W3197181736 hasConcept C41008148 @default.
- W3197181736 hasConcept C50644808 @default.
- W3197181736 hasConcept C76155785 @default.
- W3197181736 hasConceptScore W3197181736C113775141 @default.
- W3197181736 hasConceptScore W3197181736C118524514 @default.
- W3197181736 hasConceptScore W3197181736C127413603 @default.
- W3197181736 hasConceptScore W3197181736C150072547 @default.
- W3197181736 hasConceptScore W3197181736C151927369 @default.
- W3197181736 hasConceptScore W3197181736C154945302 @default.
- W3197181736 hasConceptScore W3197181736C24326235 @default.
- W3197181736 hasConceptScore W3197181736C29984679 @default.
- W3197181736 hasConceptScore W3197181736C41008148 @default.
- W3197181736 hasConceptScore W3197181736C50644808 @default.
- W3197181736 hasConceptScore W3197181736C76155785 @default.
- W3197181736 hasIssue "3" @default.
- W3197181736 hasLocation W31971817361 @default.
- W3197181736 hasOpenAccess W3197181736 @default.
- W3197181736 hasPrimaryLocation W31971817361 @default.
- W3197181736 hasRelatedWork W1966175794 @default.
- W3197181736 hasRelatedWork W2055789895 @default.
- W3197181736 hasRelatedWork W2773100214 @default.
- W3197181736 hasRelatedWork W2989604810 @default.
- W3197181736 hasRelatedWork W2991631906 @default.
- W3197181736 hasRelatedWork W3124814002 @default.
- W3197181736 hasRelatedWork W3182104506 @default.
- W3197181736 hasRelatedWork W4210819681 @default.
- W3197181736 hasRelatedWork W4224319233 @default.
- W3197181736 hasRelatedWork W4308098692 @default.
- W3197181736 hasVolume "23" @default.
- W3197181736 isParatext "false" @default.
- W3197181736 isRetracted "false" @default.
- W3197181736 magId "3197181736" @default.
- W3197181736 workType "article" @default.