Matches in SemOpenAlex for { <https://semopenalex.org/work/W3197194339> ?p ?o ?g. }
- W3197194339 endingPage "112673" @default.
- W3197194339 startingPage "112673" @default.
- W3197194339 abstract "Although remote sensing (RS) of solar-induced chlorophyll fluorescence (SIF) is increasingly used as a valuable source of information about vegetation photosynthetic activity, the RS SIF observations are significantly influenced by canopy-specific structural features (i.e., canopy architecture including leaf area index and presence of woody components), atmospheric conditions during their acquisition (e.g., proportion of direct and diffuse irradiance) and observational geometric configurations (e.g., sun and viewing directions). Radiative transfer (RT) models have the potential to provide a better understanding of the canopy structural effects on the SIF emission and RS signals. Here, we used the DART model to assess the daily influence, from morning to evening, of forest 3D architecture on SIF nadir radiance, emission, escape factor and nadir yield of eight 100 m × 100 m forest study plots established in a temperate deciduous forest of the Smithsonian Environmental Research Center (Edgewater, MD, USA). The 3D architecture of each plot was derived from airborne LiDAR. DART simulations of these 3D forest plots and their 1D (i.e., vertical profile of sun-adapted and shade-adapted leaves) and 0D (i.e., homogeneous layer of sun-adapted leaves above an homogeneous layer of shade-adapted leaves) abstractions were compared to assess the relative errors (ε1D−3D and ε0D−3D) associated with horizontal and vertical structural heterogeneity, respectively. Forest 3D structure, especially horizontal heterogeneity, had a great influence on forest nadir SIF radiance, resulting in ε1D−3D up to 55% at 8:00 and 18:00 (i.e., for oblique sun directions). The key indicators of this impact, in the descending order of importance, were the SIF escape factor (ε1D−3D up to 40%), the attenuation of incident photosynthetically active radiation (ε1D−3D less than 5%), and the SIF emission yield (ε1D−3D less than 2%). The influence of forest architecture on the nadir SIF escape factor and SIF yield (ε1D−3D up to 40%) varied over time, with differences in forest stand structure, and per spectral domain, being always larger between 640 and 700 nm than between 700 and 850 nm. In addition, woody elements demonstrated a large influence on forest SIF radiance due to their “shading” effect (ε up to 17%) and their “blocking” effect (ε ≈ 10%), both of them higher for far-red than for red SIF. These results underline the importance of 3D forest canopy architecture, especially 2D heterogeneity, and inclusion of woody elements in RT modeling used for interpretation of the RS SIF signal, and subsequently for the estimation of gross primary production and detection of vegetation stress." @default.
- W3197194339 created "2021-09-13" @default.
- W3197194339 creator A5019930452 @default.
- W3197194339 creator A5022202509 @default.
- W3197194339 creator A5023622036 @default.
- W3197194339 creator A5031267447 @default.
- W3197194339 creator A5032467184 @default.
- W3197194339 creator A5077322258 @default.
- W3197194339 date "2021-11-01" @default.
- W3197194339 modified "2023-10-18" @default.
- W3197194339 title "Assessing impacts of canopy 3D structure on chlorophyll fluorescence radiance and radiative budget of deciduous forest stands using DART" @default.
- W3197194339 cites W1567498106 @default.
- W3197194339 cites W1965228281 @default.
- W3197194339 cites W1966527728 @default.
- W3197194339 cites W1974315837 @default.
- W3197194339 cites W1976312778 @default.
- W3197194339 cites W1978160572 @default.
- W3197194339 cites W1983493876 @default.
- W3197194339 cites W1983644570 @default.
- W3197194339 cites W1986743298 @default.
- W3197194339 cites W1993343282 @default.
- W3197194339 cites W1995103915 @default.
- W3197194339 cites W2003114532 @default.
- W3197194339 cites W2010804183 @default.
- W3197194339 cites W2016471104 @default.
- W3197194339 cites W2031507667 @default.
- W3197194339 cites W2039211598 @default.
- W3197194339 cites W2043149863 @default.
- W3197194339 cites W2072490792 @default.
- W3197194339 cites W2073100112 @default.
- W3197194339 cites W2082917714 @default.
- W3197194339 cites W2101695001 @default.
- W3197194339 cites W2111443984 @default.
- W3197194339 cites W2125763679 @default.
- W3197194339 cites W2133353144 @default.
- W3197194339 cites W2136775576 @default.
- W3197194339 cites W2136876992 @default.
- W3197194339 cites W2142283539 @default.
- W3197194339 cites W2149934238 @default.
- W3197194339 cites W2288649142 @default.
- W3197194339 cites W2475593558 @default.
- W3197194339 cites W2503844826 @default.
- W3197194339 cites W2525621092 @default.
- W3197194339 cites W2547976495 @default.
- W3197194339 cites W2561415527 @default.
- W3197194339 cites W2586552825 @default.
- W3197194339 cites W2598430045 @default.
- W3197194339 cites W2605582374 @default.
- W3197194339 cites W2752348541 @default.
- W3197194339 cites W2800666577 @default.
- W3197194339 cites W2806394060 @default.
- W3197194339 cites W2809295405 @default.
- W3197194339 cites W2901846858 @default.
- W3197194339 cites W2917237895 @default.
- W3197194339 cites W2955121758 @default.
- W3197194339 cites W2956476097 @default.
- W3197194339 cites W2956697767 @default.
- W3197194339 cites W2970891978 @default.
- W3197194339 cites W3008023004 @default.
- W3197194339 cites W3008379897 @default.
- W3197194339 cites W3009129857 @default.
- W3197194339 cites W3011511010 @default.
- W3197194339 cites W3038033109 @default.
- W3197194339 cites W3085387054 @default.
- W3197194339 cites W3110574776 @default.
- W3197194339 cites W3111588540 @default.
- W3197194339 cites W3122901268 @default.
- W3197194339 cites W3123341944 @default.
- W3197194339 cites W3139196583 @default.
- W3197194339 cites W3160362971 @default.
- W3197194339 cites W3174119308 @default.
- W3197194339 cites W568010113 @default.
- W3197194339 cites W627777417 @default.
- W3197194339 doi "https://doi.org/10.1016/j.rse.2021.112673" @default.
- W3197194339 hasPublicationYear "2021" @default.
- W3197194339 type Work @default.
- W3197194339 sameAs 3197194339 @default.
- W3197194339 citedByCount "19" @default.
- W3197194339 countsByYear W31971943392022 @default.
- W3197194339 countsByYear W31971943392023 @default.
- W3197194339 crossrefType "journal-article" @default.
- W3197194339 hasAuthorship W3197194339A5019930452 @default.
- W3197194339 hasAuthorship W3197194339A5022202509 @default.
- W3197194339 hasAuthorship W3197194339A5023622036 @default.
- W3197194339 hasAuthorship W3197194339A5031267447 @default.
- W3197194339 hasAuthorship W3197194339A5032467184 @default.
- W3197194339 hasAuthorship W3197194339A5077322258 @default.
- W3197194339 hasBestOaLocation W31971943391 @default.
- W3197194339 hasConcept C101000010 @default.
- W3197194339 hasConcept C121332964 @default.
- W3197194339 hasConcept C127313418 @default.
- W3197194339 hasConcept C1276947 @default.
- W3197194339 hasConcept C154702282 @default.
- W3197194339 hasConcept C166957645 @default.
- W3197194339 hasConcept C18903297 @default.
- W3197194339 hasConcept C19269812 @default.
- W3197194339 hasConcept C199360897 @default.
- W3197194339 hasConcept C199390426 @default.