Matches in SemOpenAlex for { <https://semopenalex.org/work/W3197200500> ?p ?o ?g. }
- W3197200500 abstract "Kink oscillations of coronal loops, i.e., standing kink waves, is one of the most studied dynamic phenomena in the solar corona. The oscillations are excited by impulsive energy releases, such as low coronal eruptions. Typical periods of the oscillations are from a few to several minutes, and are found to increase linearly with the increase in the major radius of the oscillating loops. It clearly demonstrates that kink oscillations are natural modes of the loops, and can be described as standing fast magnetoacoustic waves with the wavelength determined by the length of the loop. Kink oscillations are observed in two different regimes. In the rapidly decaying regime, the apparent displacement amplitude reaches several minor radii of the loop. The damping time which is about several oscillation periods decreases with the increase in the oscillation amplitude, suggesting a nonlinear nature of the damping. In the decayless regime, the amplitudes are smaller than a minor radius, and the driver is still debated. The review summarises major findings obtained during the last decade, and covers both observational and theoretical results. Observational results include creation and analysis of comprehensive catalogues of the oscillation events, and detection of kink oscillations with imaging and spectral instruments in the EUV and microwave bands. Theoretical results include various approaches to modelling in terms of the magnetohydrodynamic wave theory. Properties of kink oscillations are found to depend on parameters of the oscillating loop, such as the magnetic twist, stratification, steady flows, temperature variations and so on, which make kink oscillations a natural probe of these parameters by the method of magnetohydrodynamic seismology." @default.
- W3197200500 created "2021-09-13" @default.
- W3197200500 creator A5010482598 @default.
- W3197200500 creator A5017437151 @default.
- W3197200500 creator A5018611280 @default.
- W3197200500 creator A5025386917 @default.
- W3197200500 creator A5025928183 @default.
- W3197200500 creator A5030891003 @default.
- W3197200500 creator A5036844888 @default.
- W3197200500 creator A5038205553 @default.
- W3197200500 creator A5040555364 @default.
- W3197200500 creator A5041116463 @default.
- W3197200500 creator A5043847254 @default.
- W3197200500 creator A5047162398 @default.
- W3197200500 creator A5048329564 @default.
- W3197200500 creator A5075206789 @default.
- W3197200500 creator A5081039779 @default.
- W3197200500 creator A5082416766 @default.
- W3197200500 date "2021-08-30" @default.
- W3197200500 modified "2023-10-15" @default.
- W3197200500 title "Kink Oscillations of Coronal Loops" @default.
- W3197200500 cites W1480048564 @default.
- W3197200500 cites W1484030292 @default.
- W3197200500 cites W1509772914 @default.
- W3197200500 cites W1553852180 @default.
- W3197200500 cites W1668216902 @default.
- W3197200500 cites W1841692463 @default.
- W3197200500 cites W1964191590 @default.
- W3197200500 cites W1966345660 @default.
- W3197200500 cites W1968149494 @default.
- W3197200500 cites W1970564444 @default.
- W3197200500 cites W1971172452 @default.
- W3197200500 cites W1972120301 @default.
- W3197200500 cites W1975251908 @default.
- W3197200500 cites W1977701947 @default.
- W3197200500 cites W1979366763 @default.
- W3197200500 cites W1984628253 @default.
- W3197200500 cites W1985618668 @default.
- W3197200500 cites W1985936006 @default.
- W3197200500 cites W1988130027 @default.
- W3197200500 cites W1990924710 @default.
- W3197200500 cites W1994267818 @default.
- W3197200500 cites W1995582575 @default.
- W3197200500 cites W1998392444 @default.
- W3197200500 cites W1999231245 @default.
- W3197200500 cites W2001579317 @default.
- W3197200500 cites W2001970907 @default.
- W3197200500 cites W2004029524 @default.
- W3197200500 cites W2008109409 @default.
- W3197200500 cites W2008155389 @default.
- W3197200500 cites W2010023719 @default.
- W3197200500 cites W2010797481 @default.
- W3197200500 cites W2012272242 @default.
- W3197200500 cites W2014007425 @default.
- W3197200500 cites W2016826701 @default.
- W3197200500 cites W2017458814 @default.
- W3197200500 cites W2021217490 @default.
- W3197200500 cites W2022204019 @default.
- W3197200500 cites W2022602138 @default.
- W3197200500 cites W2025740846 @default.
- W3197200500 cites W2026411148 @default.
- W3197200500 cites W2029786665 @default.
- W3197200500 cites W2029874235 @default.
- W3197200500 cites W2034004959 @default.
- W3197200500 cites W2034601455 @default.
- W3197200500 cites W2042714187 @default.
- W3197200500 cites W2043691790 @default.
- W3197200500 cites W2049147568 @default.
- W3197200500 cites W2050900201 @default.
- W3197200500 cites W2052343806 @default.
- W3197200500 cites W2053428180 @default.
- W3197200500 cites W2057585535 @default.
- W3197200500 cites W2059678048 @default.
- W3197200500 cites W2062260129 @default.
- W3197200500 cites W2062905048 @default.
- W3197200500 cites W2063258530 @default.
- W3197200500 cites W2064436064 @default.
- W3197200500 cites W2065975914 @default.
- W3197200500 cites W2073226506 @default.
- W3197200500 cites W2074777166 @default.
- W3197200500 cites W2076010956 @default.
- W3197200500 cites W2078358572 @default.
- W3197200500 cites W2078668571 @default.
- W3197200500 cites W2082577949 @default.
- W3197200500 cites W2086265018 @default.
- W3197200500 cites W2089333871 @default.
- W3197200500 cites W2091906979 @default.
- W3197200500 cites W2093432746 @default.
- W3197200500 cites W2093960269 @default.
- W3197200500 cites W2094590955 @default.
- W3197200500 cites W2095372271 @default.
- W3197200500 cites W2100942907 @default.
- W3197200500 cites W2104568035 @default.
- W3197200500 cites W2106342470 @default.
- W3197200500 cites W2106810373 @default.
- W3197200500 cites W2107648359 @default.
- W3197200500 cites W2111123906 @default.
- W3197200500 cites W2112420333 @default.
- W3197200500 cites W2113250000 @default.
- W3197200500 cites W2113344633 @default.