Matches in SemOpenAlex for { <https://semopenalex.org/work/W3197266947> ?p ?o ?g. }
- W3197266947 endingPage "104830" @default.
- W3197266947 startingPage "104830" @default.
- W3197266947 abstract "Many linear dimension reduction methods proposed in the literature can be formulated using an appropriate pair of scatter matrices. The eigen-decomposition of one scatter matrix with respect to another is then often used to determine the dimension of the signal subspace and to separate signal and noise parts of the data. Three popular dimension reduction methods, namely principal component analysis (PCA), fourth order blind identification (FOBI) and sliced inverse regression (SIR) are considered in detail and the first two moments of subsets of the eigenvalues are used to test for the dimension of the signal space. The limiting null distributions of the test statistics are discussed and novel bootstrap strategies are suggested for the small sample cases. In all three cases, consistent test-based estimates of the signal subspace dimension are introduced as well. The asymptotic and bootstrap tests are illustrated in real data examples." @default.
- W3197266947 created "2021-09-13" @default.
- W3197266947 creator A5020994740 @default.
- W3197266947 creator A5057170468 @default.
- W3197266947 creator A5073367627 @default.
- W3197266947 date "2022-03-01" @default.
- W3197266947 modified "2023-09-27" @default.
- W3197266947 title "Asymptotic and bootstrap tests for subspace dimension" @default.
- W3197266947 cites W1571696237 @default.
- W3197266947 cites W1622307581 @default.
- W3197266947 cites W1807984730 @default.
- W3197266947 cites W1979368488 @default.
- W3197266947 cites W1985683489 @default.
- W3197266947 cites W2008418230 @default.
- W3197266947 cites W2012801463 @default.
- W3197266947 cites W2026786624 @default.
- W3197266947 cites W2038201838 @default.
- W3197266947 cites W2039130732 @default.
- W3197266947 cites W2042292499 @default.
- W3197266947 cites W2050911569 @default.
- W3197266947 cites W2055894834 @default.
- W3197266947 cites W2057660572 @default.
- W3197266947 cites W2058989825 @default.
- W3197266947 cites W2060121127 @default.
- W3197266947 cites W2062052013 @default.
- W3197266947 cites W2069223264 @default.
- W3197266947 cites W2092097721 @default.
- W3197266947 cites W2095296627 @default.
- W3197266947 cites W2129159757 @default.
- W3197266947 cites W2144405862 @default.
- W3197266947 cites W2148654450 @default.
- W3197266947 cites W2163490846 @default.
- W3197266947 cites W2257909921 @default.
- W3197266947 cites W2515179109 @default.
- W3197266947 cites W2559927072 @default.
- W3197266947 cites W2945638852 @default.
- W3197266947 cites W3102927666 @default.
- W3197266947 cites W3104966664 @default.
- W3197266947 doi "https://doi.org/10.1016/j.jmva.2021.104830" @default.
- W3197266947 hasPublicationYear "2022" @default.
- W3197266947 type Work @default.
- W3197266947 sameAs 3197266947 @default.
- W3197266947 citedByCount "5" @default.
- W3197266947 countsByYear W31972669472022 @default.
- W3197266947 countsByYear W31972669472023 @default.
- W3197266947 crossrefType "journal-article" @default.
- W3197266947 hasAuthorship W3197266947A5020994740 @default.
- W3197266947 hasAuthorship W3197266947A5057170468 @default.
- W3197266947 hasAuthorship W3197266947A5073367627 @default.
- W3197266947 hasBestOaLocation W31972669471 @default.
- W3197266947 hasConcept C105795698 @default.
- W3197266947 hasConcept C111030470 @default.
- W3197266947 hasConcept C114614502 @default.
- W3197266947 hasConcept C115961682 @default.
- W3197266947 hasConcept C121332964 @default.
- W3197266947 hasConcept C12362212 @default.
- W3197266947 hasConcept C134306372 @default.
- W3197266947 hasConcept C154945302 @default.
- W3197266947 hasConcept C158693339 @default.
- W3197266947 hasConcept C169756996 @default.
- W3197266947 hasConcept C202444582 @default.
- W3197266947 hasConcept C27438332 @default.
- W3197266947 hasConcept C2777121530 @default.
- W3197266947 hasConcept C27931671 @default.
- W3197266947 hasConcept C28826006 @default.
- W3197266947 hasConcept C30732413 @default.
- W3197266947 hasConcept C32834561 @default.
- W3197266947 hasConcept C33676613 @default.
- W3197266947 hasConcept C33923547 @default.
- W3197266947 hasConcept C41008148 @default.
- W3197266947 hasConcept C41341539 @default.
- W3197266947 hasConcept C62520636 @default.
- W3197266947 hasConcept C70518039 @default.
- W3197266947 hasConcept C83546350 @default.
- W3197266947 hasConcept C87007009 @default.
- W3197266947 hasConcept C99498987 @default.
- W3197266947 hasConceptScore W3197266947C105795698 @default.
- W3197266947 hasConceptScore W3197266947C111030470 @default.
- W3197266947 hasConceptScore W3197266947C114614502 @default.
- W3197266947 hasConceptScore W3197266947C115961682 @default.
- W3197266947 hasConceptScore W3197266947C121332964 @default.
- W3197266947 hasConceptScore W3197266947C12362212 @default.
- W3197266947 hasConceptScore W3197266947C134306372 @default.
- W3197266947 hasConceptScore W3197266947C154945302 @default.
- W3197266947 hasConceptScore W3197266947C158693339 @default.
- W3197266947 hasConceptScore W3197266947C169756996 @default.
- W3197266947 hasConceptScore W3197266947C202444582 @default.
- W3197266947 hasConceptScore W3197266947C27438332 @default.
- W3197266947 hasConceptScore W3197266947C2777121530 @default.
- W3197266947 hasConceptScore W3197266947C27931671 @default.
- W3197266947 hasConceptScore W3197266947C28826006 @default.
- W3197266947 hasConceptScore W3197266947C30732413 @default.
- W3197266947 hasConceptScore W3197266947C32834561 @default.
- W3197266947 hasConceptScore W3197266947C33676613 @default.
- W3197266947 hasConceptScore W3197266947C33923547 @default.
- W3197266947 hasConceptScore W3197266947C41008148 @default.
- W3197266947 hasConceptScore W3197266947C41341539 @default.
- W3197266947 hasConceptScore W3197266947C62520636 @default.