Matches in SemOpenAlex for { <https://semopenalex.org/work/W3197269903> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W3197269903 abstract "This thesis considers mirror symmetry for the small cohomology of cominuscule homogeneous spaces. We present two main results: Firstly, in Theorem 2.2.7, we present a type-independent Laurent polynomial expression for Rietsch's Lie-theoretic mirror model [Rie08] restricted to an algebraic torus. Secondly, in Theorems 3.1.1 and 3.1.2, we present canonical mirror models for the exceptional family in terms of projective coordinates called (generalized) Plucker coordinates, and show that these are isomorphic to Rietsch's models. The Laurent polynomial expression resembles the potential for projective complete intersections given in [Giv96]: the sum of all the toric coordinates plus a quantum term consisting of a homogeneous polynomial in the toric coordinates divided by the product of all toric coordinates. This polynomial is initially enumerated by subexpressions of a given Weyl group element in another. In Corollary 2.5.12 we show that this enumeration can be replaced by diagrammatic combinatorics considering subsets of the quivers defined in [Per07, CMP08]. As we illustrate in the example of Grassmannians, these subsets can be considered as generalizations of Young diagrams. The canonical mirror models for the exceptional family are similar to the models found for other cominuscule families in [MR20, PR13, PRW16]. One notable difference is that we find cubic and quartic homogeneous polynomials in the Plucker coordinates, whereas these polynomials were found to be at most quadratic in the cases of Lagrangian Grassmannians and quadrics, and linear for Grassmannians. Analogously to the aforementioned papers, we use a presentation of the coordinate ring of a unipotent cell by [GLS11]. However, we give a type-independent criterion for the generators of this presentation to coincide (up to a constant) with Plucker coordinates in Proposition 3.2.5, and we show the isomorphism with Rietsch's mirror model using the algebraic torus where our Laurent polynomial expression holds." @default.
- W3197269903 created "2021-09-13" @default.
- W3197269903 creator A5051882538 @default.
- W3197269903 date "2021-04-01" @default.
- W3197269903 modified "2023-09-23" @default.
- W3197269903 title "Laurent polynomial Landau-Ginzburg models for cominuscule homogeneous spaces and mirror symmetry for the exceptional family" @default.
- W3197269903 doi "https://doi.org/10.22024/unikent/01.02.88285" @default.
- W3197269903 hasPublicationYear "2021" @default.
- W3197269903 type Work @default.
- W3197269903 sameAs 3197269903 @default.
- W3197269903 citedByCount "0" @default.
- W3197269903 crossrefType "dissertation" @default.
- W3197269903 hasAuthorship W3197269903A5051882538 @default.
- W3197269903 hasConcept C101044782 @default.
- W3197269903 hasConcept C106402246 @default.
- W3197269903 hasConcept C106639798 @default.
- W3197269903 hasConcept C114614502 @default.
- W3197269903 hasConcept C134306372 @default.
- W3197269903 hasConcept C136119220 @default.
- W3197269903 hasConcept C17103678 @default.
- W3197269903 hasConcept C188374626 @default.
- W3197269903 hasConcept C202444582 @default.
- W3197269903 hasConcept C33923547 @default.
- W3197269903 hasConcept C90119067 @default.
- W3197269903 hasConcept C9485509 @default.
- W3197269903 hasConceptScore W3197269903C101044782 @default.
- W3197269903 hasConceptScore W3197269903C106402246 @default.
- W3197269903 hasConceptScore W3197269903C106639798 @default.
- W3197269903 hasConceptScore W3197269903C114614502 @default.
- W3197269903 hasConceptScore W3197269903C134306372 @default.
- W3197269903 hasConceptScore W3197269903C136119220 @default.
- W3197269903 hasConceptScore W3197269903C17103678 @default.
- W3197269903 hasConceptScore W3197269903C188374626 @default.
- W3197269903 hasConceptScore W3197269903C202444582 @default.
- W3197269903 hasConceptScore W3197269903C33923547 @default.
- W3197269903 hasConceptScore W3197269903C90119067 @default.
- W3197269903 hasConceptScore W3197269903C9485509 @default.
- W3197269903 hasLocation W31972699031 @default.
- W3197269903 hasOpenAccess W3197269903 @default.
- W3197269903 hasPrimaryLocation W31972699031 @default.
- W3197269903 hasRelatedWork W1716653471 @default.
- W3197269903 hasRelatedWork W1847678829 @default.
- W3197269903 hasRelatedWork W1976913443 @default.
- W3197269903 hasRelatedWork W2042408723 @default.
- W3197269903 hasRelatedWork W2057635198 @default.
- W3197269903 hasRelatedWork W2153317437 @default.
- W3197269903 hasRelatedWork W2340914453 @default.
- W3197269903 hasRelatedWork W2758613671 @default.
- W3197269903 hasRelatedWork W2800101904 @default.
- W3197269903 hasRelatedWork W2952178918 @default.
- W3197269903 hasRelatedWork W2952706324 @default.
- W3197269903 hasRelatedWork W2963480618 @default.
- W3197269903 hasRelatedWork W2963582322 @default.
- W3197269903 hasRelatedWork W2964020135 @default.
- W3197269903 hasRelatedWork W2990624276 @default.
- W3197269903 hasRelatedWork W3001218651 @default.
- W3197269903 hasRelatedWork W3096337189 @default.
- W3197269903 hasRelatedWork W3098622493 @default.
- W3197269903 hasRelatedWork W3100389475 @default.
- W3197269903 hasRelatedWork W3209112401 @default.
- W3197269903 isParatext "false" @default.
- W3197269903 isRetracted "false" @default.
- W3197269903 magId "3197269903" @default.
- W3197269903 workType "dissertation" @default.