Matches in SemOpenAlex for { <https://semopenalex.org/work/W3197343325> ?p ?o ?g. }
- W3197343325 abstract "Detailed knowledge of the uppermost water table representing the shallow groundwater system is critical in order to address societal challenges that relate to the mitigation and adaptation to climate change and enhancing climate resilience in general. Machine learning (ML) allows for high resolution modeling of the water table depth beyond the capabilities of conventional numerical physically-based hydrological models with respect to spatial resolution and overall accuracy. For this, in-situ well and proxy observations are used as training data in combination with high resolution covariates. The objective of this study is to model the depth of the uppermost water table for a typical summer and winter condition at 10 m spatial resolution over entire Denmark (43,000 km 2 ). CatBoost, a state of the art implementation of gradient boosting decision trees, is employed in this study to model the water table depth and the associated uncertainties. The groundwater domain has not been the most prominent field of applications of recent hydrological ML advances due to the lack of big data. This study brings forward a novel knowledge-guided ML framework to overcome this limitation by integrating simulation results from a physically-based groundwater flow model. The simulation data are utilized to (1) identify wells that represent the uppermost water table, (2) augment missing training data by accounting for simulated water level seasonality, and (3) expand the list of covariates. The curated training dataset contains around 13,000 wells, 19,000 groundwater proxy observations at lakes, streams and coastline as well as 15 covariates. Cross validation attests that the ML model generalizes well with a mean absolute error of around 115 cm considering solely well observations and a MAE of <50 cm taking also the proxy observations into consideration. Quantile regression is applied to estimate confidence intervals and the estimated uncertainty is largest for moraine clay soils that are characterized with a distinct geological heterogeneity. This study highlights a novel research avenue of knowledge-guided ML for the groundwater domain by efficiently supporting a ML model with a physically-based hydrological model to predict the depth of the water table at unprecedented spatial detail and accuracy." @default.
- W3197343325 created "2021-09-13" @default.
- W3197343325 creator A5005151745 @default.
- W3197343325 creator A5019801915 @default.
- W3197343325 creator A5022446248 @default.
- W3197343325 creator A5048795657 @default.
- W3197343325 creator A5055071893 @default.
- W3197343325 creator A5056917712 @default.
- W3197343325 date "2021-09-01" @default.
- W3197343325 modified "2023-10-14" @default.
- W3197343325 title "High Resolution Water Table Modeling of the Shallow Groundwater Using a Knowledge-Guided Gradient Boosting Decision Tree Model" @default.
- W3197343325 cites W1678356000 @default.
- W3197343325 cites W1872656829 @default.
- W3197343325 cites W1949968028 @default.
- W3197343325 cites W1985037212 @default.
- W3197343325 cites W1985839444 @default.
- W3197343325 cites W2009391356 @default.
- W3197343325 cites W2012328721 @default.
- W3197343325 cites W2029828130 @default.
- W3197343325 cites W2049842380 @default.
- W3197343325 cites W2087324037 @default.
- W3197343325 cites W2095143873 @default.
- W3197343325 cites W2098487338 @default.
- W3197343325 cites W2112342534 @default.
- W3197343325 cites W2133596638 @default.
- W3197343325 cites W2155347783 @default.
- W3197343325 cites W2165387589 @default.
- W3197343325 cites W2171997072 @default.
- W3197343325 cites W2255236674 @default.
- W3197343325 cites W2261399118 @default.
- W3197343325 cites W2293528564 @default.
- W3197343325 cites W2308369269 @default.
- W3197343325 cites W2335372511 @default.
- W3197343325 cites W2335585357 @default.
- W3197343325 cites W2342920605 @default.
- W3197343325 cites W2487385493 @default.
- W3197343325 cites W2567805992 @default.
- W3197343325 cites W2572622164 @default.
- W3197343325 cites W2592559322 @default.
- W3197343325 cites W2755375308 @default.
- W3197343325 cites W2766470662 @default.
- W3197343325 cites W2784208206 @default.
- W3197343325 cites W2793182436 @default.
- W3197343325 cites W2793997912 @default.
- W3197343325 cites W2795006859 @default.
- W3197343325 cites W2889246260 @default.
- W3197343325 cites W2907891425 @default.
- W3197343325 cites W2912539592 @default.
- W3197343325 cites W2913323966 @default.
- W3197343325 cites W2942851257 @default.
- W3197343325 cites W2943160824 @default.
- W3197343325 cites W2943844017 @default.
- W3197343325 cites W2956497647 @default.
- W3197343325 cites W2981981032 @default.
- W3197343325 cites W2986457312 @default.
- W3197343325 cites W3044346761 @default.
- W3197343325 cites W3049729109 @default.
- W3197343325 cites W3092026988 @default.
- W3197343325 cites W3094948551 @default.
- W3197343325 cites W3106370744 @default.
- W3197343325 cites W3111077008 @default.
- W3197343325 cites W3133404425 @default.
- W3197343325 cites W3151387141 @default.
- W3197343325 doi "https://doi.org/10.3389/frwa.2021.701726" @default.
- W3197343325 hasPublicationYear "2021" @default.
- W3197343325 type Work @default.
- W3197343325 sameAs 3197343325 @default.
- W3197343325 citedByCount "14" @default.
- W3197343325 countsByYear W31973433252022 @default.
- W3197343325 countsByYear W31973433252023 @default.
- W3197343325 crossrefType "journal-article" @default.
- W3197343325 hasAuthorship W3197343325A5005151745 @default.
- W3197343325 hasAuthorship W3197343325A5019801915 @default.
- W3197343325 hasAuthorship W3197343325A5022446248 @default.
- W3197343325 hasAuthorship W3197343325A5048795657 @default.
- W3197343325 hasAuthorship W3197343325A5055071893 @default.
- W3197343325 hasAuthorship W3197343325A5056917712 @default.
- W3197343325 hasBestOaLocation W31973433251 @default.
- W3197343325 hasConcept C119857082 @default.
- W3197343325 hasConcept C124101348 @default.
- W3197343325 hasConcept C127313418 @default.
- W3197343325 hasConcept C146849305 @default.
- W3197343325 hasConcept C187320778 @default.
- W3197343325 hasConcept C2780148112 @default.
- W3197343325 hasConcept C39432304 @default.
- W3197343325 hasConcept C39769621 @default.
- W3197343325 hasConcept C41008148 @default.
- W3197343325 hasConcept C46686674 @default.
- W3197343325 hasConcept C76177295 @default.
- W3197343325 hasConcept C76886044 @default.
- W3197343325 hasConcept C84525736 @default.
- W3197343325 hasConceptScore W3197343325C119857082 @default.
- W3197343325 hasConceptScore W3197343325C124101348 @default.
- W3197343325 hasConceptScore W3197343325C127313418 @default.
- W3197343325 hasConceptScore W3197343325C146849305 @default.
- W3197343325 hasConceptScore W3197343325C187320778 @default.
- W3197343325 hasConceptScore W3197343325C2780148112 @default.
- W3197343325 hasConceptScore W3197343325C39432304 @default.
- W3197343325 hasConceptScore W3197343325C39769621 @default.
- W3197343325 hasConceptScore W3197343325C41008148 @default.