Matches in SemOpenAlex for { <https://semopenalex.org/work/W3197357345> ?p ?o ?g. }
- W3197357345 endingPage "149" @default.
- W3197357345 startingPage "125" @default.
- W3197357345 abstract "In the next 30 years, Alzheimer’s disease cases are predicted to drastically increase. Consequently, there is a critical need for research that can counteract the increasing number of Alzheimer’s disease patients. However, current methods of Alzheimer’s disease research have significant limitations. For example, Alzheimer’s disease research is often restricted by resource, temporal, and recruitment barriers (e.g., participant dropout). Unlike standard research, big data analysis is excellent at investigating complex long-term phenomena such as Alzheimer’s disease. Big data methods can also overcome many of the limitations that restrict Alzheimer’s disease research. Accordingly, researchers are turning to big data methods to study Alzheimer’s disease. In this chapter, we outline the applications of big data to Alzheimer’s disease research as well as common methods used to collect and analyze big data. We also explore how big data research could be used to treat, diagnose, and understand Alzheimer’s disease. Accordingly, we aim to provide a general understanding of big data methods in Alzheimer’s disease research and highlight the advantages of big data analysis over standard dementia research." @default.
- W3197357345 created "2021-09-13" @default.
- W3197357345 creator A5016064500 @default.
- W3197357345 creator A5026110190 @default.
- W3197357345 creator A5045449252 @default.
- W3197357345 date "2022-01-01" @default.
- W3197357345 modified "2023-10-16" @default.
- W3197357345 title "Using big data methods to understand Alzheimer’s disease" @default.
- W3197357345 cites W1509250421 @default.
- W3197357345 cites W1605885548 @default.
- W3197357345 cites W1715619412 @default.
- W3197357345 cites W1759290616 @default.
- W3197357345 cites W1797408175 @default.
- W3197357345 cites W1967449362 @default.
- W3197357345 cites W1967769046 @default.
- W3197357345 cites W1977222435 @default.
- W3197357345 cites W1979268377 @default.
- W3197357345 cites W1984407408 @default.
- W3197357345 cites W1987204546 @default.
- W3197357345 cites W1989038604 @default.
- W3197357345 cites W1989947165 @default.
- W3197357345 cites W1994067502 @default.
- W3197357345 cites W2004910511 @default.
- W3197357345 cites W2005265463 @default.
- W3197357345 cites W2007044705 @default.
- W3197357345 cites W2009005276 @default.
- W3197357345 cites W2012047089 @default.
- W3197357345 cites W2012433927 @default.
- W3197357345 cites W2016023958 @default.
- W3197357345 cites W2016981346 @default.
- W3197357345 cites W2020780341 @default.
- W3197357345 cites W2028471410 @default.
- W3197357345 cites W2037403969 @default.
- W3197357345 cites W2039690532 @default.
- W3197357345 cites W2044038526 @default.
- W3197357345 cites W2050320227 @default.
- W3197357345 cites W2054899104 @default.
- W3197357345 cites W2056034609 @default.
- W3197357345 cites W2058924226 @default.
- W3197357345 cites W2059122751 @default.
- W3197357345 cites W2059214757 @default.
- W3197357345 cites W2065338300 @default.
- W3197357345 cites W2075996497 @default.
- W3197357345 cites W2081533023 @default.
- W3197357345 cites W2102495647 @default.
- W3197357345 cites W2102508963 @default.
- W3197357345 cites W2111200377 @default.
- W3197357345 cites W2114060717 @default.
- W3197357345 cites W2115017507 @default.
- W3197357345 cites W2121280112 @default.
- W3197357345 cites W2129030910 @default.
- W3197357345 cites W2137932118 @default.
- W3197357345 cites W2148744914 @default.
- W3197357345 cites W2150824618 @default.
- W3197357345 cites W2154992193 @default.
- W3197357345 cites W2155513557 @default.
- W3197357345 cites W2156093068 @default.
- W3197357345 cites W2157110881 @default.
- W3197357345 cites W2157876056 @default.
- W3197357345 cites W2158460231 @default.
- W3197357345 cites W2160597466 @default.
- W3197357345 cites W2162652570 @default.
- W3197357345 cites W2167241857 @default.
- W3197357345 cites W2167840686 @default.
- W3197357345 cites W2257072764 @default.
- W3197357345 cites W2261525379 @default.
- W3197357345 cites W2306105455 @default.
- W3197357345 cites W2315172318 @default.
- W3197357345 cites W2321037622 @default.
- W3197357345 cites W2331613960 @default.
- W3197357345 cites W2402500880 @default.
- W3197357345 cites W2528216338 @default.
- W3197357345 cites W2531356907 @default.
- W3197357345 cites W2539626956 @default.
- W3197357345 cites W2563148755 @default.
- W3197357345 cites W2567343134 @default.
- W3197357345 cites W2582524520 @default.
- W3197357345 cites W2738055145 @default.
- W3197357345 cites W2767318646 @default.
- W3197357345 cites W2789629884 @default.
- W3197357345 cites W2791673852 @default.
- W3197357345 cites W2887894332 @default.
- W3197357345 cites W2893131674 @default.
- W3197357345 cites W2952768073 @default.
- W3197357345 cites W2962369126 @default.
- W3197357345 cites W2981088775 @default.
- W3197357345 cites W3014391303 @default.
- W3197357345 cites W4211050998 @default.
- W3197357345 cites W4230566335 @default.
- W3197357345 cites W4236328779 @default.
- W3197357345 doi "https://doi.org/10.1016/b978-0-12-821334-6.00004-1" @default.
- W3197357345 hasPublicationYear "2022" @default.
- W3197357345 type Work @default.
- W3197357345 sameAs 3197357345 @default.
- W3197357345 citedByCount "1" @default.
- W3197357345 countsByYear W31973573452022 @default.
- W3197357345 crossrefType "book-chapter" @default.
- W3197357345 hasAuthorship W3197357345A5016064500 @default.