Matches in SemOpenAlex for { <https://semopenalex.org/work/W3197367043> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W3197367043 abstract "Purpose This study aims to propose a learning pattern analysis method which can improve a predictive model’s performance, as well as discover hidden insights into micro-level learning pattern. Analyzing student’s learning patterns can help instructors understand how their course design or activities shape learning behaviors; depict students’ beliefs about learning and their motivation; and predict learning performance by analyzing individual students’ learning patterns. Although time-series analysis is one of the most feasible predictive methods for learning pattern analysis, literature-indicated current approaches cannot provide holistic insights about learning patterns for personalized intervention. This study identified at-risk students by micro-level learning pattern analysis and detected pattern types, especially at-risk patterns that existed in the case study. The connections among students’ learning patterns, corresponding self-regulated learning (SRL) strategies and learning performance were finally revealed. Design/methodology/approach The method used long short-term memory (LSTM)-encoder to process micro-level behavioral patterns for feature extraction and compression, thus the students’ behavior pattern information were saved into encoded series. The encoded time-series data were then used for pattern analysis and performance prediction. Time series clustering were performed to interpret the unique strength of proposed method. Findings Successful students showed consistent participation levels and balanced behavioral frequency distributions. The successful students also adjusted learning behaviors to meet with course requirements accordingly. The three at-risk patten types showed the low-engagement (R1) the low-interaction (R2) and the non-persistent characteristics (R3). Successful students showed more complete SRL strategies than failed students. Political Science had higher at-risk chances in all three at-risk types. Computer Science, Earth Science and Economics showed higher chances of having R3 students. Research limitations/implications The study identified multiple learning patterns which can lead to the at-risk situation. However, more studies are needed to validate whether the same at-risk types can be found in other educational settings. In addition, this case study found the distributions of at-risk types were vary in different subjects. The relationship between subjects and at-risk types is worth further investigation. Originality/value This study found the proposed method can effectively extract micro-level behavioral information to generate better prediction outcomes and depict student’s SRL learning strategies in online learning. The authors confirm that the research in their work is original, and that all the data given in the paper are real and authentic. The study has not been submitted to peer review and not has been accepted for publishing in another journal." @default.
- W3197367043 created "2021-09-13" @default.
- W3197367043 creator A5011275854 @default.
- W3197367043 creator A5019560977 @default.
- W3197367043 creator A5041840031 @default.
- W3197367043 creator A5053514094 @default.
- W3197367043 creator A5068716822 @default.
- W3197367043 date "2021-06-28" @default.
- W3197367043 modified "2023-09-23" @default.
- W3197367043 title "Revealing at-risk learning patterns and corresponding self-regulated strategies via LSTM encoder and time-series clustering" @default.
- W3197367043 cites W1975625245 @default.
- W3197367043 cites W2004353783 @default.
- W3197367043 cites W2010646608 @default.
- W3197367043 cites W2015637911 @default.
- W3197367043 cites W2018017486 @default.
- W3197367043 cites W2028472044 @default.
- W3197367043 cites W2039156923 @default.
- W3197367043 cites W2046127588 @default.
- W3197367043 cites W2056637459 @default.
- W3197367043 cites W2082295504 @default.
- W3197367043 cites W2098880898 @default.
- W3197367043 cites W2164185374 @default.
- W3197367043 cites W2168076769 @default.
- W3197367043 cites W2177066871 @default.
- W3197367043 cites W2239218366 @default.
- W3197367043 cites W2526918022 @default.
- W3197367043 cites W2569549648 @default.
- W3197367043 cites W2580551395 @default.
- W3197367043 cites W2597900308 @default.
- W3197367043 cites W2610740022 @default.
- W3197367043 cites W2726622985 @default.
- W3197367043 cites W2748715535 @default.
- W3197367043 cites W2768744498 @default.
- W3197367043 cites W2795848092 @default.
- W3197367043 cites W2910873667 @default.
- W3197367043 cites W2915337192 @default.
- W3197367043 cites W2991356326 @default.
- W3197367043 cites W2998861456 @default.
- W3197367043 cites W3041279471 @default.
- W3197367043 doi "https://doi.org/10.1108/idd-12-2020-0160" @default.
- W3197367043 hasPublicationYear "2021" @default.
- W3197367043 type Work @default.
- W3197367043 sameAs 3197367043 @default.
- W3197367043 citedByCount "0" @default.
- W3197367043 crossrefType "journal-article" @default.
- W3197367043 hasAuthorship W3197367043A5011275854 @default.
- W3197367043 hasAuthorship W3197367043A5019560977 @default.
- W3197367043 hasAuthorship W3197367043A5041840031 @default.
- W3197367043 hasAuthorship W3197367043A5053514094 @default.
- W3197367043 hasAuthorship W3197367043A5068716822 @default.
- W3197367043 hasConcept C115903868 @default.
- W3197367043 hasConcept C119857082 @default.
- W3197367043 hasConcept C153180895 @default.
- W3197367043 hasConcept C154945302 @default.
- W3197367043 hasConcept C40506919 @default.
- W3197367043 hasConcept C41008148 @default.
- W3197367043 hasConcept C73555534 @default.
- W3197367043 hasConcept C8038995 @default.
- W3197367043 hasConcept C83804111 @default.
- W3197367043 hasConceptScore W3197367043C115903868 @default.
- W3197367043 hasConceptScore W3197367043C119857082 @default.
- W3197367043 hasConceptScore W3197367043C153180895 @default.
- W3197367043 hasConceptScore W3197367043C154945302 @default.
- W3197367043 hasConceptScore W3197367043C40506919 @default.
- W3197367043 hasConceptScore W3197367043C41008148 @default.
- W3197367043 hasConceptScore W3197367043C73555534 @default.
- W3197367043 hasConceptScore W3197367043C8038995 @default.
- W3197367043 hasConceptScore W3197367043C83804111 @default.
- W3197367043 hasIssue "ahead-of-print" @default.
- W3197367043 hasLocation W31973670431 @default.
- W3197367043 hasOpenAccess W3197367043 @default.
- W3197367043 hasPrimaryLocation W31973670431 @default.
- W3197367043 hasRelatedWork W10015831 @default.
- W3197367043 hasRelatedWork W10666723 @default.
- W3197367043 hasRelatedWork W10697079 @default.
- W3197367043 hasRelatedWork W13046114 @default.
- W3197367043 hasRelatedWork W2390764 @default.
- W3197367043 hasRelatedWork W3102522 @default.
- W3197367043 hasRelatedWork W36490 @default.
- W3197367043 hasRelatedWork W7724241 @default.
- W3197367043 hasRelatedWork W8197146 @default.
- W3197367043 hasRelatedWork W9480776 @default.
- W3197367043 hasVolume "ahead-of-print" @default.
- W3197367043 isParatext "false" @default.
- W3197367043 isRetracted "false" @default.
- W3197367043 magId "3197367043" @default.
- W3197367043 workType "article" @default.