Matches in SemOpenAlex for { <https://semopenalex.org/work/W3197387788> ?p ?o ?g. }
- W3197387788 endingPage "4505" @default.
- W3197387788 startingPage "4505" @default.
- W3197387788 abstract "Machine learning (ML) is among the main tools of artificial intelligence and are increasingly used in population and clinical cardiology to stratify cardiovascular risk. The systematic review presents an analysis of literature on using various ML methods (artificial neural networks, random forest, stochastic gradient boosting, support vector machines, etc.) to develop predictive models determining the immediate and long-term risk of adverse events after coronary artery bypass grafting and percutaneous coronary intervention. Most of the research on this issue is focused on creation of novel forecast models with a higher predictive value. It is emphasized that the improvement of modeling technologies and the development of clinical decision support systems is one of the most promising areas of digitalizing healthcare that are in demand in everyday professional activities." @default.
- W3197387788 created "2021-09-13" @default.
- W3197387788 creator A5009888979 @default.
- W3197387788 creator A5035657608 @default.
- W3197387788 creator A5059865186 @default.
- W3197387788 creator A5084747211 @default.
- W3197387788 date "2021-09-04" @default.
- W3197387788 modified "2023-10-01" @default.
- W3197387788 title "Machine learning in predicting immediate and long-term outcomes of myocardial revascularization: a systematic review" @default.
- W3197387788 cites W144961487 @default.
- W3197387788 cites W1702536112 @default.
- W3197387788 cites W1934667690 @default.
- W3197387788 cites W1980505117 @default.
- W3197387788 cites W1997692898 @default.
- W3197387788 cites W2001939438 @default.
- W3197387788 cites W2033750223 @default.
- W3197387788 cites W2142181701 @default.
- W3197387788 cites W2148018516 @default.
- W3197387788 cites W2167410495 @default.
- W3197387788 cites W2203314363 @default.
- W3197387788 cites W2262894855 @default.
- W3197387788 cites W2520547729 @default.
- W3197387788 cites W2550447077 @default.
- W3197387788 cites W2571536841 @default.
- W3197387788 cites W2593656715 @default.
- W3197387788 cites W2733294365 @default.
- W3197387788 cites W2763069604 @default.
- W3197387788 cites W2789187909 @default.
- W3197387788 cites W2790952035 @default.
- W3197387788 cites W2802261101 @default.
- W3197387788 cites W2885860918 @default.
- W3197387788 cites W2894773715 @default.
- W3197387788 cites W2901035518 @default.
- W3197387788 cites W2902559573 @default.
- W3197387788 cites W2903130798 @default.
- W3197387788 cites W2908738937 @default.
- W3197387788 cites W2911067327 @default.
- W3197387788 cites W2913705661 @default.
- W3197387788 cites W2915975757 @default.
- W3197387788 cites W2919604151 @default.
- W3197387788 cites W2937406453 @default.
- W3197387788 cites W2945218143 @default.
- W3197387788 cites W2951837897 @default.
- W3197387788 cites W2953505302 @default.
- W3197387788 cites W2955547090 @default.
- W3197387788 cites W2956876402 @default.
- W3197387788 cites W2975990972 @default.
- W3197387788 cites W2979638097 @default.
- W3197387788 cites W2982374880 @default.
- W3197387788 cites W2986424528 @default.
- W3197387788 cites W2987212315 @default.
- W3197387788 cites W2993846258 @default.
- W3197387788 cites W2994638107 @default.
- W3197387788 cites W2998151521 @default.
- W3197387788 cites W3002024860 @default.
- W3197387788 cites W3014135700 @default.
- W3197387788 cites W3018495177 @default.
- W3197387788 cites W3020167858 @default.
- W3197387788 cites W3092494313 @default.
- W3197387788 cites W3115774531 @default.
- W3197387788 cites W3156286235 @default.
- W3197387788 cites W4251466451 @default.
- W3197387788 cites W4294215472 @default.
- W3197387788 doi "https://doi.org/10.15829/1560-4071-2021-4505" @default.
- W3197387788 hasPublicationYear "2021" @default.
- W3197387788 type Work @default.
- W3197387788 sameAs 3197387788 @default.
- W3197387788 citedByCount "3" @default.
- W3197387788 countsByYear W31973877882023 @default.
- W3197387788 crossrefType "journal-article" @default.
- W3197387788 hasAuthorship W3197387788A5009888979 @default.
- W3197387788 hasAuthorship W3197387788A5035657608 @default.
- W3197387788 hasAuthorship W3197387788A5059865186 @default.
- W3197387788 hasAuthorship W3197387788A5084747211 @default.
- W3197387788 hasBestOaLocation W31973877881 @default.
- W3197387788 hasConcept C119857082 @default.
- W3197387788 hasConcept C12267149 @default.
- W3197387788 hasConcept C126322002 @default.
- W3197387788 hasConcept C154945302 @default.
- W3197387788 hasConcept C164705383 @default.
- W3197387788 hasConcept C169258074 @default.
- W3197387788 hasConcept C177713679 @default.
- W3197387788 hasConcept C2776820930 @default.
- W3197387788 hasConcept C2779464278 @default.
- W3197387788 hasConcept C2780400711 @default.
- W3197387788 hasConcept C3017915907 @default.
- W3197387788 hasConcept C3019719930 @default.
- W3197387788 hasConcept C41008148 @default.
- W3197387788 hasConcept C46686674 @default.
- W3197387788 hasConcept C500558357 @default.
- W3197387788 hasConcept C70153297 @default.
- W3197387788 hasConcept C71924100 @default.
- W3197387788 hasConceptScore W3197387788C119857082 @default.
- W3197387788 hasConceptScore W3197387788C12267149 @default.
- W3197387788 hasConceptScore W3197387788C126322002 @default.
- W3197387788 hasConceptScore W3197387788C154945302 @default.
- W3197387788 hasConceptScore W3197387788C164705383 @default.
- W3197387788 hasConceptScore W3197387788C169258074 @default.