Matches in SemOpenAlex for { <https://semopenalex.org/work/W3197418598> ?p ?o ?g. }
- W3197418598 abstract "A hybrid algorithm based on machine learning and quantum ensemble learning is proposed to find an approximate solution to a partial differential equation with good precision and favorable scaling in the required number of qubits. The classical component consists in training several regressors (weak-learners), capable of solving a partial differential equation approximately using machine learning. The quantum component consists in adapting the QBoost algorithm to solve regression problems to build an ensemble of classical learners. We have successfully applied our framework to solve the 1D Burgers’ equation with viscosity, showing that the quantum ensemble method really improves the solutions produced by classical weak-learners. We also implemented the algorithm on the D-Wave Systems, confirming the good performance of the quantum solution compared to the simulated annealing and exact solver methods." @default.
- W3197418598 created "2021-09-13" @default.
- W3197418598 creator A5020695744 @default.
- W3197418598 creator A5038260776 @default.
- W3197418598 creator A5057601415 @default.
- W3197418598 creator A5059823365 @default.
- W3197418598 creator A5060290929 @default.
- W3197418598 creator A5091316543 @default.
- W3197418598 date "2023-02-25" @default.
- W3197418598 modified "2023-09-27" @default.
- W3197418598 title "QBoost for regression problems: solving partial differential equations" @default.
- W3197418598 cites W1057021034 @default.
- W3197418598 cites W1534477342 @default.
- W3197418598 cites W1902793265 @default.
- W3197418598 cites W1975528636 @default.
- W3197418598 cites W1983624953 @default.
- W3197418598 cites W1985727987 @default.
- W3197418598 cites W1999991268 @default.
- W3197418598 cites W2049736198 @default.
- W3197418598 cites W2061082730 @default.
- W3197418598 cites W2069563009 @default.
- W3197418598 cites W2093988788 @default.
- W3197418598 cites W2107808235 @default.
- W3197418598 cites W2111084110 @default.
- W3197418598 cites W2155806188 @default.
- W3197418598 cites W2327049932 @default.
- W3197418598 cites W2337082154 @default.
- W3197418598 cites W2508967951 @default.
- W3197418598 cites W2564229214 @default.
- W3197418598 cites W2579928628 @default.
- W3197418598 cites W2745110207 @default.
- W3197418598 cites W2749028154 @default.
- W3197418598 cites W2750586355 @default.
- W3197418598 cites W2792946961 @default.
- W3197418598 cites W2798945316 @default.
- W3197418598 cites W2809133492 @default.
- W3197418598 cites W2811105005 @default.
- W3197418598 cites W2887925010 @default.
- W3197418598 cites W2898430977 @default.
- W3197418598 cites W2911964244 @default.
- W3197418598 cites W2923537029 @default.
- W3197418598 cites W2934958788 @default.
- W3197418598 cites W2943027572 @default.
- W3197418598 cites W2952384119 @default.
- W3197418598 cites W2963837235 @default.
- W3197418598 cites W2966419255 @default.
- W3197418598 cites W2998847955 @default.
- W3197418598 cites W3008593201 @default.
- W3197418598 cites W3010488723 @default.
- W3197418598 cites W3014691782 @default.
- W3197418598 cites W3024243470 @default.
- W3197418598 cites W3036307007 @default.
- W3197418598 cites W3046554384 @default.
- W3197418598 cites W3096400261 @default.
- W3197418598 cites W3100806676 @default.
- W3197418598 cites W3104114886 @default.
- W3197418598 cites W3104481216 @default.
- W3197418598 cites W3106193592 @default.
- W3197418598 cites W3106469348 @default.
- W3197418598 cites W3111322109 @default.
- W3197418598 cites W3114014284 @default.
- W3197418598 cites W3123529660 @default.
- W3197418598 cites W3135391574 @default.
- W3197418598 cites W4250589301 @default.
- W3197418598 doi "https://doi.org/10.1007/s11128-023-03871-z" @default.
- W3197418598 hasPublicationYear "2023" @default.
- W3197418598 type Work @default.
- W3197418598 sameAs 3197418598 @default.
- W3197418598 citedByCount "0" @default.
- W3197418598 crossrefType "journal-article" @default.
- W3197418598 hasAuthorship W3197418598A5020695744 @default.
- W3197418598 hasAuthorship W3197418598A5038260776 @default.
- W3197418598 hasAuthorship W3197418598A5057601415 @default.
- W3197418598 hasAuthorship W3197418598A5059823365 @default.
- W3197418598 hasAuthorship W3197418598A5060290929 @default.
- W3197418598 hasAuthorship W3197418598A5091316543 @default.
- W3197418598 hasBestOaLocation W31974185982 @default.
- W3197418598 hasConcept C11413529 @default.
- W3197418598 hasConcept C121332964 @default.
- W3197418598 hasConcept C126255220 @default.
- W3197418598 hasConcept C134306372 @default.
- W3197418598 hasConcept C137019171 @default.
- W3197418598 hasConcept C168167062 @default.
- W3197418598 hasConcept C203087015 @default.
- W3197418598 hasConcept C2778770139 @default.
- W3197418598 hasConcept C28826006 @default.
- W3197418598 hasConcept C33923547 @default.
- W3197418598 hasConcept C41008148 @default.
- W3197418598 hasConcept C58053490 @default.
- W3197418598 hasConcept C62520636 @default.
- W3197418598 hasConcept C84114770 @default.
- W3197418598 hasConcept C93779851 @default.
- W3197418598 hasConceptScore W3197418598C11413529 @default.
- W3197418598 hasConceptScore W3197418598C121332964 @default.
- W3197418598 hasConceptScore W3197418598C126255220 @default.
- W3197418598 hasConceptScore W3197418598C134306372 @default.
- W3197418598 hasConceptScore W3197418598C137019171 @default.
- W3197418598 hasConceptScore W3197418598C168167062 @default.
- W3197418598 hasConceptScore W3197418598C203087015 @default.
- W3197418598 hasConceptScore W3197418598C2778770139 @default.