Matches in SemOpenAlex for { <https://semopenalex.org/work/W3197450056> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W3197450056 abstract "PreviousNext No AccessFirst International Meeting for Applied Geoscience & Energy Expanded AbstractsDual-band generative learning for low-frequency extrapolation in seismic land dataAuthors: Oleg OvcharenkoVladimir KazeiDaniel PeterIlya SilvestrovAndrey BakulinTariq AlkhalifahOleg OvcharenkoKAUSTSearch for more papers by this author, Vladimir KazeiAramco Services CompanySearch for more papers by this author, Daniel PeterKAUSTSearch for more papers by this author, Ilya SilvestrovSaudi AramcoSearch for more papers by this author, Andrey BakulinSaudi AramcoSearch for more papers by this author, and Tariq AlkhalifahKAUSTSearch for more papers by this authorhttps://doi.org/10.1190/segam2021-3579442.1 SectionsSupplemental MaterialAboutPDF/ePub ToolsAdd to favoritesDownload CitationsTrack CitationsPermissions ShareFacebookTwitterLinked InRedditEmail AbstractThe presence of low-frequency energy in seismic data can help mitigate cycle-skipping problems in full-waveform inversion. Unfortunately, the generation and recording of low-frequency signals in seismic exploration remains a non-trivial task. Extrapolation of missing low-frequency content in field data might be addressed in a data-driven framework. In particular, deep learning models trained on synthetic data could be used for inference on the field data. Such an implementation of switching application domains remains challenging. We, therefore, propose the concept of generative dual-band learning to facilitate the knowledge transfer between synthetic and field seismic data applications of low-frequency data extrapolation. We first explain the two-step procedure for training a generative adversarial network (GAN) that extrapolates low frequencies. Then, we describe the workflow for synthetic dataset generation. Finally, we explore the feasibility of the dual-band learning concept on real nearsurface land data acquired in Saudi Arabia.Keywords: machine, learning, low frequency, land, elastic, artificial intelligencePermalink: https://doi.org/10.1190/segam2021-3579442.1FiguresReferencesRelatedDetails First International Meeting for Applied Geoscience & Energy Expanded AbstractsISSN (print):1052-3812 ISSN (online):1949-4645Copyright: 2021 Pages: 3561 publication data© 2021 Published in electronic format with permission by the Society of Exploration GeophysicistsPublisher:Society of Exploration Geophysicists HistoryPublished: 01 Sep 2021 CITATION INFORMATION Oleg Ovcharenko, Vladimir Kazei, Daniel Peter, Ilya Silvestrov, Andrey Bakulin, and Tariq Alkhalifah, (2021), Dual-band generative learning for low-frequency extrapolation in seismic land data, SEG Technical Program Expanded Abstracts : 1345-1349. https://doi.org/10.1190/segam2021-3579442.1 Plain-Language Summary Keywordsmachine learninglow frequencylandelasticartificial intelligencePDF DownloadLoading ..." @default.
- W3197450056 created "2021-09-13" @default.
- W3197450056 creator A5006190361 @default.
- W3197450056 creator A5006480587 @default.
- W3197450056 creator A5032021877 @default.
- W3197450056 creator A5034973010 @default.
- W3197450056 creator A5050997470 @default.
- W3197450056 creator A5067998463 @default.
- W3197450056 date "2021-09-01" @default.
- W3197450056 modified "2023-09-23" @default.
- W3197450056 title "Dual-band generative learning for low-frequency extrapolation in seismic land data" @default.
- W3197450056 cites W1495892466 @default.
- W3197450056 cites W1901129140 @default.
- W3197450056 cites W2886876884 @default.
- W3197450056 cites W2891209234 @default.
- W3197450056 cites W2896901590 @default.
- W3197450056 cites W2897550922 @default.
- W3197450056 cites W2955412401 @default.
- W3197450056 cites W2963073614 @default.
- W3197450056 cites W2963775778 @default.
- W3197450056 cites W2966618135 @default.
- W3197450056 cites W2968585572 @default.
- W3197450056 cites W2988397834 @default.
- W3197450056 cites W3009658940 @default.
- W3197450056 cites W3047035577 @default.
- W3197450056 cites W3089836865 @default.
- W3197450056 cites W3090293942 @default.
- W3197450056 cites W3090339332 @default.
- W3197450056 cites W3090979856 @default.
- W3197450056 cites W3091123039 @default.
- W3197450056 cites W3091624781 @default.
- W3197450056 cites W3096419168 @default.
- W3197450056 cites W3113715007 @default.
- W3197450056 cites W3122629534 @default.
- W3197450056 cites W3124966598 @default.
- W3197450056 doi "https://doi.org/10.1190/segam2021-3579442.1" @default.
- W3197450056 hasPublicationYear "2021" @default.
- W3197450056 type Work @default.
- W3197450056 sameAs 3197450056 @default.
- W3197450056 citedByCount "3" @default.
- W3197450056 countsByYear W31974500562022 @default.
- W3197450056 countsByYear W31974500562023 @default.
- W3197450056 crossrefType "proceedings-article" @default.
- W3197450056 hasAuthorship W3197450056A5006190361 @default.
- W3197450056 hasAuthorship W3197450056A5006480587 @default.
- W3197450056 hasAuthorship W3197450056A5032021877 @default.
- W3197450056 hasAuthorship W3197450056A5034973010 @default.
- W3197450056 hasAuthorship W3197450056A5050997470 @default.
- W3197450056 hasAuthorship W3197450056A5067998463 @default.
- W3197450056 hasBestOaLocation W31974500562 @default.
- W3197450056 hasConcept C108583219 @default.
- W3197450056 hasConcept C119857082 @default.
- W3197450056 hasConcept C132459708 @default.
- W3197450056 hasConcept C134306372 @default.
- W3197450056 hasConcept C154945302 @default.
- W3197450056 hasConcept C167966045 @default.
- W3197450056 hasConcept C202444582 @default.
- W3197450056 hasConcept C2776214188 @default.
- W3197450056 hasConcept C33923547 @default.
- W3197450056 hasConcept C39890363 @default.
- W3197450056 hasConcept C41008148 @default.
- W3197450056 hasConcept C9652623 @default.
- W3197450056 hasConceptScore W3197450056C108583219 @default.
- W3197450056 hasConceptScore W3197450056C119857082 @default.
- W3197450056 hasConceptScore W3197450056C132459708 @default.
- W3197450056 hasConceptScore W3197450056C134306372 @default.
- W3197450056 hasConceptScore W3197450056C154945302 @default.
- W3197450056 hasConceptScore W3197450056C167966045 @default.
- W3197450056 hasConceptScore W3197450056C202444582 @default.
- W3197450056 hasConceptScore W3197450056C2776214188 @default.
- W3197450056 hasConceptScore W3197450056C33923547 @default.
- W3197450056 hasConceptScore W3197450056C39890363 @default.
- W3197450056 hasConceptScore W3197450056C41008148 @default.
- W3197450056 hasConceptScore W3197450056C9652623 @default.
- W3197450056 hasLocation W31974500561 @default.
- W3197450056 hasLocation W31974500562 @default.
- W3197450056 hasOpenAccess W3197450056 @default.
- W3197450056 hasPrimaryLocation W31974500561 @default.
- W3197450056 hasRelatedWork W2795261237 @default.
- W3197450056 hasRelatedWork W3014300295 @default.
- W3197450056 hasRelatedWork W3164822677 @default.
- W3197450056 hasRelatedWork W4223943233 @default.
- W3197450056 hasRelatedWork W4225161397 @default.
- W3197450056 hasRelatedWork W4312200629 @default.
- W3197450056 hasRelatedWork W4360585206 @default.
- W3197450056 hasRelatedWork W4364306694 @default.
- W3197450056 hasRelatedWork W4380075502 @default.
- W3197450056 hasRelatedWork W4380086463 @default.
- W3197450056 isParatext "false" @default.
- W3197450056 isRetracted "false" @default.
- W3197450056 magId "3197450056" @default.
- W3197450056 workType "article" @default.