Matches in SemOpenAlex for { <https://semopenalex.org/work/W3197481512> ?p ?o ?g. }
- W3197481512 endingPage "20" @default.
- W3197481512 startingPage "1" @default.
- W3197481512 abstract "Recommender algorithms combining knowledge graph and graph convolutional network are becoming more and more popular recently. Specifically, attributes describing the items to be recommended are often used as additional information. These attributes along with items are highly interconnected, intrinsically forming a Knowledge Graph (KG). These algorithms use KGs as an auxiliary data source to alleviate the negative impact of data sparsity. However, these graph convolutional network based algorithms do not distinguish the importance of different neighbors of entities in the KG, and according to Pareto’s principle, the important neighbors only account for a small proportion. These traditional algorithms can not fully mine the useful information in the KG. To fully release the power of KGs for building recommender systems, we propose in this article KRAN, a Knowledge Refining Attention Network, which can subtly capture the characteristics of the KG and thus boost recommendation performance. We first introduce a traditional attention mechanism into the KG processing, making the knowledge extraction more targeted, and then propose a refining mechanism to improve the traditional attention mechanism to extract the knowledge in the KG more effectively. More precisely, KRAN is designed to use our proposed knowledge-refining attention mechanism to aggregate and obtain the representations of the entities (both attributes and items) in the KG. Our knowledge-refining attention mechanism first measures the relevance between an entity and it’s neighbors in the KG by attention coefficients, and then further refines the attention coefficients using a “richer-get-richer” principle, in order to focus on highly relevant neighbors while eliminating less relevant neighbors for noise reduction. In addition, for the item cold start problem, we propose KRAN-CD, a variant of KRAN, which further incorporates pre-trained KG embeddings to handle cold start items. Experiments show that KRAN and KRAN-CD consistently outperform state-of-the-art baselines across different settings." @default.
- W3197481512 created "2021-09-13" @default.
- W3197481512 creator A5026625771 @default.
- W3197481512 creator A5032817846 @default.
- W3197481512 creator A5042717633 @default.
- W3197481512 creator A5073717678 @default.
- W3197481512 date "2021-09-03" @default.
- W3197481512 modified "2023-10-16" @default.
- W3197481512 title "KRAN: Knowledge Refining Attention Network for Recommendation" @default.
- W3197481512 cites W175353854 @default.
- W3197481512 cites W1967555147 @default.
- W3197481512 cites W1981816069 @default.
- W3197481512 cites W1994389483 @default.
- W3197481512 cites W2007660349 @default.
- W3197481512 cites W2010187764 @default.
- W3197481512 cites W2018426558 @default.
- W3197481512 cites W2052173011 @default.
- W3197481512 cites W2053811285 @default.
- W3197481512 cites W2078841894 @default.
- W3197481512 cites W2083005252 @default.
- W3197481512 cites W2116341502 @default.
- W3197481512 cites W2118752767 @default.
- W3197481512 cites W2134539427 @default.
- W3197481512 cites W2171960770 @default.
- W3197481512 cites W2295739661 @default.
- W3197481512 cites W2313588666 @default.
- W3197481512 cites W2509235963 @default.
- W3197481512 cites W2532651260 @default.
- W3197481512 cites W2579393094 @default.
- W3197481512 cites W2605089588 @default.
- W3197481512 cites W281665770 @default.
- W3197481512 cites W2945623882 @default.
- W3197481512 cites W2945827377 @default.
- W3197481512 cites W2963869731 @default.
- W3197481512 cites W2990045899 @default.
- W3197481512 cites W3003278796 @default.
- W3197481512 cites W3045200674 @default.
- W3197481512 cites W3098087397 @default.
- W3197481512 cites W3098923689 @default.
- W3197481512 cites W3104097132 @default.
- W3197481512 cites W3106439716 @default.
- W3197481512 cites W4238404964 @default.
- W3197481512 doi "https://doi.org/10.1145/3470783" @default.
- W3197481512 hasPublicationYear "2021" @default.
- W3197481512 type Work @default.
- W3197481512 sameAs 3197481512 @default.
- W3197481512 citedByCount "3" @default.
- W3197481512 countsByYear W31974815122022 @default.
- W3197481512 countsByYear W31974815122023 @default.
- W3197481512 crossrefType "journal-article" @default.
- W3197481512 hasAuthorship W3197481512A5026625771 @default.
- W3197481512 hasAuthorship W3197481512A5032817846 @default.
- W3197481512 hasAuthorship W3197481512A5042717633 @default.
- W3197481512 hasAuthorship W3197481512A5073717678 @default.
- W3197481512 hasConcept C111472728 @default.
- W3197481512 hasConcept C119857082 @default.
- W3197481512 hasConcept C124101348 @default.
- W3197481512 hasConcept C132525143 @default.
- W3197481512 hasConcept C138885662 @default.
- W3197481512 hasConcept C147789679 @default.
- W3197481512 hasConcept C154945302 @default.
- W3197481512 hasConcept C158154518 @default.
- W3197481512 hasConcept C159985019 @default.
- W3197481512 hasConcept C17744445 @default.
- W3197481512 hasConcept C185592680 @default.
- W3197481512 hasConcept C192562407 @default.
- W3197481512 hasConcept C199539241 @default.
- W3197481512 hasConcept C23123220 @default.
- W3197481512 hasConcept C41008148 @default.
- W3197481512 hasConcept C4679612 @default.
- W3197481512 hasConcept C557471498 @default.
- W3197481512 hasConcept C60044698 @default.
- W3197481512 hasConcept C80444323 @default.
- W3197481512 hasConcept C89611455 @default.
- W3197481512 hasConceptScore W3197481512C111472728 @default.
- W3197481512 hasConceptScore W3197481512C119857082 @default.
- W3197481512 hasConceptScore W3197481512C124101348 @default.
- W3197481512 hasConceptScore W3197481512C132525143 @default.
- W3197481512 hasConceptScore W3197481512C138885662 @default.
- W3197481512 hasConceptScore W3197481512C147789679 @default.
- W3197481512 hasConceptScore W3197481512C154945302 @default.
- W3197481512 hasConceptScore W3197481512C158154518 @default.
- W3197481512 hasConceptScore W3197481512C159985019 @default.
- W3197481512 hasConceptScore W3197481512C17744445 @default.
- W3197481512 hasConceptScore W3197481512C185592680 @default.
- W3197481512 hasConceptScore W3197481512C192562407 @default.
- W3197481512 hasConceptScore W3197481512C199539241 @default.
- W3197481512 hasConceptScore W3197481512C23123220 @default.
- W3197481512 hasConceptScore W3197481512C41008148 @default.
- W3197481512 hasConceptScore W3197481512C4679612 @default.
- W3197481512 hasConceptScore W3197481512C557471498 @default.
- W3197481512 hasConceptScore W3197481512C60044698 @default.
- W3197481512 hasConceptScore W3197481512C80444323 @default.
- W3197481512 hasConceptScore W3197481512C89611455 @default.
- W3197481512 hasFunder F4320321001 @default.
- W3197481512 hasFunder F4320322841 @default.
- W3197481512 hasFunder F4320336756 @default.
- W3197481512 hasIssue "2" @default.