Matches in SemOpenAlex for { <https://semopenalex.org/work/W3197494593> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W3197494593 endingPage "506" @default.
- W3197494593 startingPage "495" @default.
- W3197494593 abstract "Prediction of lung cancer at early stages is essential for diagnosing and prescribing the correct treatment. With the continuous development of medical data in healthcare services, Lung cancer prediction is the most concerning area of interest. Therefore, early prediction of cancer helps in reducing the mortality rate of humans. The existing techniques are time-consuming and have very low accuracy. The proposed work introduces a novel technique called Target Projection Feature Matched Deep Artificial Neural Network with LSTM (TPFMDANN-LSTM) for accurate lung cancer prediction with minimum time consumption. The proposed deep learning model consists of multiple layers to learn the given input patient data. Different processes are carried out at each layer to predict lung cancer at an earlier stage. The input layer of the deep neural network receives the data and associated features and sends them to the hidden layer. The first hidden layer performs the feature selection process using Target Projection matching to identify the relevant features for accurate disease prediction with minimum time consumption. Hidden layer 2 performs the patient Data Classification based on Czekanowski's dice similarity coefficient with the selected relevant features from the previous layer to predict lung cancer. The factors considered for performance evaluation of the proposed technique with the existing state of the art approaches include prediction accuracy, false-positive rate and prediction time. Lunar 16 Lung Cancer dataset consisting of patient data is used for evaluation. The obtained results show that the proposed TPFMDANN-LSTM technique achieves higher prediction accuracy with minimum time consumption and less false positive rate than the state-of-the-art methods. The experimental results reveal that the TPFMDANN-LSTM technique performs better with a 6% improvement in prediction accuracy, 36% reduction of false positives, and 16% faster prediction time for lung cancer detection compared to existing works." @default.
- W3197494593 created "2021-09-13" @default.
- W3197494593 creator A5008410999 @default.
- W3197494593 creator A5022512112 @default.
- W3197494593 date "2022-01-01" @default.
- W3197494593 modified "2023-10-14" @default.
- W3197494593 title "Target Projection Feature Matching Based Deep ANN with LSTM for Lung Cancer Prediction" @default.
- W3197494593 cites W2802444330 @default.
- W3197494593 cites W2807335946 @default.
- W3197494593 cites W2884544755 @default.
- W3197494593 cites W2898275793 @default.
- W3197494593 cites W2902930318 @default.
- W3197494593 cites W2943040914 @default.
- W3197494593 cites W2947415482 @default.
- W3197494593 cites W2966754085 @default.
- W3197494593 cites W2967573033 @default.
- W3197494593 cites W2996764545 @default.
- W3197494593 cites W3006750504 @default.
- W3197494593 cites W3009339546 @default.
- W3197494593 cites W3030276127 @default.
- W3197494593 cites W3031436852 @default.
- W3197494593 cites W3033809851 @default.
- W3197494593 cites W3048712675 @default.
- W3197494593 cites W3084996758 @default.
- W3197494593 cites W3091986220 @default.
- W3197494593 cites W3108484983 @default.
- W3197494593 cites W3126588155 @default.
- W3197494593 doi "https://doi.org/10.32604/iasc.2022.019546" @default.
- W3197494593 hasPublicationYear "2022" @default.
- W3197494593 type Work @default.
- W3197494593 sameAs 3197494593 @default.
- W3197494593 citedByCount "3" @default.
- W3197494593 countsByYear W31974945932023 @default.
- W3197494593 crossrefType "journal-article" @default.
- W3197494593 hasAuthorship W3197494593A5008410999 @default.
- W3197494593 hasAuthorship W3197494593A5022512112 @default.
- W3197494593 hasBestOaLocation W31974945931 @default.
- W3197494593 hasConcept C108583219 @default.
- W3197494593 hasConcept C11413529 @default.
- W3197494593 hasConcept C119857082 @default.
- W3197494593 hasConcept C124101348 @default.
- W3197494593 hasConcept C126322002 @default.
- W3197494593 hasConcept C138885662 @default.
- W3197494593 hasConcept C142724271 @default.
- W3197494593 hasConcept C148483581 @default.
- W3197494593 hasConcept C153180895 @default.
- W3197494593 hasConcept C154945302 @default.
- W3197494593 hasConcept C165064840 @default.
- W3197494593 hasConcept C178790620 @default.
- W3197494593 hasConcept C185592680 @default.
- W3197494593 hasConcept C2776256026 @default.
- W3197494593 hasConcept C2776401178 @default.
- W3197494593 hasConcept C2779227376 @default.
- W3197494593 hasConcept C41008148 @default.
- W3197494593 hasConcept C41895202 @default.
- W3197494593 hasConcept C50644808 @default.
- W3197494593 hasConcept C57493831 @default.
- W3197494593 hasConcept C71924100 @default.
- W3197494593 hasConceptScore W3197494593C108583219 @default.
- W3197494593 hasConceptScore W3197494593C11413529 @default.
- W3197494593 hasConceptScore W3197494593C119857082 @default.
- W3197494593 hasConceptScore W3197494593C124101348 @default.
- W3197494593 hasConceptScore W3197494593C126322002 @default.
- W3197494593 hasConceptScore W3197494593C138885662 @default.
- W3197494593 hasConceptScore W3197494593C142724271 @default.
- W3197494593 hasConceptScore W3197494593C148483581 @default.
- W3197494593 hasConceptScore W3197494593C153180895 @default.
- W3197494593 hasConceptScore W3197494593C154945302 @default.
- W3197494593 hasConceptScore W3197494593C165064840 @default.
- W3197494593 hasConceptScore W3197494593C178790620 @default.
- W3197494593 hasConceptScore W3197494593C185592680 @default.
- W3197494593 hasConceptScore W3197494593C2776256026 @default.
- W3197494593 hasConceptScore W3197494593C2776401178 @default.
- W3197494593 hasConceptScore W3197494593C2779227376 @default.
- W3197494593 hasConceptScore W3197494593C41008148 @default.
- W3197494593 hasConceptScore W3197494593C41895202 @default.
- W3197494593 hasConceptScore W3197494593C50644808 @default.
- W3197494593 hasConceptScore W3197494593C57493831 @default.
- W3197494593 hasConceptScore W3197494593C71924100 @default.
- W3197494593 hasIssue "1" @default.
- W3197494593 hasLocation W31974945931 @default.
- W3197494593 hasOpenAccess W3197494593 @default.
- W3197494593 hasPrimaryLocation W31974945931 @default.
- W3197494593 hasRelatedWork W2795261237 @default.
- W3197494593 hasRelatedWork W3014300295 @default.
- W3197494593 hasRelatedWork W3164822677 @default.
- W3197494593 hasRelatedWork W4223943233 @default.
- W3197494593 hasRelatedWork W4225161397 @default.
- W3197494593 hasRelatedWork W4312200629 @default.
- W3197494593 hasRelatedWork W4360585206 @default.
- W3197494593 hasRelatedWork W4364306694 @default.
- W3197494593 hasRelatedWork W4380075502 @default.
- W3197494593 hasRelatedWork W4380086463 @default.
- W3197494593 hasVolume "31" @default.
- W3197494593 isParatext "false" @default.
- W3197494593 isRetracted "false" @default.
- W3197494593 magId "3197494593" @default.
- W3197494593 workType "article" @default.