Matches in SemOpenAlex for { <https://semopenalex.org/work/W3197509462> ?p ?o ?g. }
- W3197509462 endingPage "103936" @default.
- W3197509462 startingPage "103936" @default.
- W3197509462 abstract "The paper presents a machine-learning based framework, named VULMA (VULnerability analysis using MAchine-learning), for vulnerability analysis of existing buildings. The underlying idea is to provide an indication of the seismic vulnerability by exploiting available photographs, which can be properly processed to provide some input data for empirical vulnerability algorithms. To this scope, a complete processing pipeline has been defined, which consists in four consecutive modules offering different and specific services. The first module, Street VULMA, performs the image gathering starting from the raw data; the second module, Data VULMA, provides a mean for the data labelling and storage; the third module, Bi VULMA, uses the collected data to train several machine-learning models for image classification; the fourth module, In VULMA, performs a ranking of the images, their analysis and consequently assigns the vulnerability index. The proposed procedure has been employed on the existing building portfolio in an extended area of the municipality of Bisceglie, Puglia, Southern Italy, for which all the modules have been tested and, above all, the machine-learning models of Bi VULMA have been trained. After, in order to test the efficiency and the reliability of the proposed tools, the entire procedure has been applied on five case study buildings. The results in terms of vulnerability index have been compared with the manual computations performed by the authors applying the same algorithm. Despite the proposed tool could be improved or modified in some of its modules, the obtained results show a good effectiveness of VULMA, which opens new scenarios in the field of vulnerability assessment procedures and risk mitigation strategies." @default.
- W3197509462 created "2021-09-13" @default.
- W3197509462 creator A5025155855 @default.
- W3197509462 creator A5065679331 @default.
- W3197509462 creator A5070779601 @default.
- W3197509462 creator A5081308471 @default.
- W3197509462 date "2021-12-01" @default.
- W3197509462 modified "2023-10-18" @default.
- W3197509462 title "Machine-learning based vulnerability analysis of existing buildings" @default.
- W3197509462 cites W1832069963 @default.
- W3197509462 cites W1967649653 @default.
- W3197509462 cites W1984749456 @default.
- W3197509462 cites W1991741901 @default.
- W3197509462 cites W1999934968 @default.
- W3197509462 cites W2005979587 @default.
- W3197509462 cites W2007271261 @default.
- W3197509462 cites W2009534748 @default.
- W3197509462 cites W2034996255 @default.
- W3197509462 cites W2052225719 @default.
- W3197509462 cites W2075076760 @default.
- W3197509462 cites W2078760801 @default.
- W3197509462 cites W2083803728 @default.
- W3197509462 cites W2109876184 @default.
- W3197509462 cites W2116360511 @default.
- W3197509462 cites W2772879194 @default.
- W3197509462 cites W2887017930 @default.
- W3197509462 cites W2935105839 @default.
- W3197509462 cites W2941345678 @default.
- W3197509462 cites W2947970503 @default.
- W3197509462 cites W2954996726 @default.
- W3197509462 cites W2974551902 @default.
- W3197509462 cites W2981416566 @default.
- W3197509462 cites W2995160388 @default.
- W3197509462 cites W3004047739 @default.
- W3197509462 cites W3033652307 @default.
- W3197509462 cites W3049424936 @default.
- W3197509462 cites W3089246515 @default.
- W3197509462 cites W3092958332 @default.
- W3197509462 cites W3102239917 @default.
- W3197509462 cites W3120027576 @default.
- W3197509462 doi "https://doi.org/10.1016/j.autcon.2021.103936" @default.
- W3197509462 hasPublicationYear "2021" @default.
- W3197509462 type Work @default.
- W3197509462 sameAs 3197509462 @default.
- W3197509462 citedByCount "61" @default.
- W3197509462 countsByYear W31975094622021 @default.
- W3197509462 countsByYear W31975094622022 @default.
- W3197509462 countsByYear W31975094622023 @default.
- W3197509462 crossrefType "journal-article" @default.
- W3197509462 hasAuthorship W3197509462A5025155855 @default.
- W3197509462 hasAuthorship W3197509462A5065679331 @default.
- W3197509462 hasAuthorship W3197509462A5070779601 @default.
- W3197509462 hasAuthorship W3197509462A5081308471 @default.
- W3197509462 hasConcept C119857082 @default.
- W3197509462 hasConcept C121332964 @default.
- W3197509462 hasConcept C124101348 @default.
- W3197509462 hasConcept C132964779 @default.
- W3197509462 hasConcept C137176749 @default.
- W3197509462 hasConcept C154945302 @default.
- W3197509462 hasConcept C15744967 @default.
- W3197509462 hasConcept C163258240 @default.
- W3197509462 hasConcept C167063184 @default.
- W3197509462 hasConcept C189430467 @default.
- W3197509462 hasConcept C199360897 @default.
- W3197509462 hasConcept C2778012447 @default.
- W3197509462 hasConcept C38652104 @default.
- W3197509462 hasConcept C41008148 @default.
- W3197509462 hasConcept C43214815 @default.
- W3197509462 hasConcept C43521106 @default.
- W3197509462 hasConcept C542102704 @default.
- W3197509462 hasConcept C62520636 @default.
- W3197509462 hasConcept C95713431 @default.
- W3197509462 hasConceptScore W3197509462C119857082 @default.
- W3197509462 hasConceptScore W3197509462C121332964 @default.
- W3197509462 hasConceptScore W3197509462C124101348 @default.
- W3197509462 hasConceptScore W3197509462C132964779 @default.
- W3197509462 hasConceptScore W3197509462C137176749 @default.
- W3197509462 hasConceptScore W3197509462C154945302 @default.
- W3197509462 hasConceptScore W3197509462C15744967 @default.
- W3197509462 hasConceptScore W3197509462C163258240 @default.
- W3197509462 hasConceptScore W3197509462C167063184 @default.
- W3197509462 hasConceptScore W3197509462C189430467 @default.
- W3197509462 hasConceptScore W3197509462C199360897 @default.
- W3197509462 hasConceptScore W3197509462C2778012447 @default.
- W3197509462 hasConceptScore W3197509462C38652104 @default.
- W3197509462 hasConceptScore W3197509462C41008148 @default.
- W3197509462 hasConceptScore W3197509462C43214815 @default.
- W3197509462 hasConceptScore W3197509462C43521106 @default.
- W3197509462 hasConceptScore W3197509462C542102704 @default.
- W3197509462 hasConceptScore W3197509462C62520636 @default.
- W3197509462 hasConceptScore W3197509462C95713431 @default.
- W3197509462 hasLocation W31975094621 @default.
- W3197509462 hasOpenAccess W3197509462 @default.
- W3197509462 hasPrimaryLocation W31975094621 @default.
- W3197509462 hasRelatedWork W2074648518 @default.
- W3197509462 hasRelatedWork W2147464529 @default.
- W3197509462 hasRelatedWork W2349044003 @default.
- W3197509462 hasRelatedWork W2349108173 @default.