Matches in SemOpenAlex for { <https://semopenalex.org/work/W3197599733> ?p ?o ?g. }
- W3197599733 endingPage "151219" @default.
- W3197599733 startingPage "151219" @default.
- W3197599733 abstract "• Present an efficient global sensitivity analysis method for nanoscale scatterometry. • Adapt a density-based, absolute, and iterative global sensitivity analysis approach. • Propose a computationally cost-effective neural network as a surrogate model. • A scatterometry configuration problem for typical grating nanostructures is studied. • Numerical case studies showcase the effectiveness of the proposed approach. Optical scatterometry has been widely used for measuring periodic thin-film structures in a fast and non-invasive way. However, shrinking structure dimensions, along with increasing structural complexity, give rise to challenging such nanoscale scatterometry. For in-line nano-fabrication process control, it is critical to enhance the measurability of small feature change. Accordingly, there is a strong need to evaluate the global sensitivity performance of different measurement strategies for identifying the best scheme that exhibits a remarkable change of optical responses under small dimension fluctuation. Such analysis requires not only an appropriate sensitivity indicator but also time-intensive computation. This paper presents an efficient approach to multi-parameter global sensitivity analysis (GSA) for scatterometry. A neural network (NN) assisted, moment-independent, and adaptive GSA method is proposed. A computationally cost-effective deep neural network is developed as a surrogate model for circumventing the simulation-based forward modeling. A scatterometry configuration problem for typical grating nanostructures is studied to demonstrate the effectiveness and the generalization potential of our approach. Our results show that the proposed approach is a powerful tool for not only examining sensitivity performance but also expediting the GSA optimization process for fast scatterometry." @default.
- W3197599733 created "2021-09-13" @default.
- W3197599733 creator A5005667904 @default.
- W3197599733 creator A5078064541 @default.
- W3197599733 creator A5086271665 @default.
- W3197599733 date "2021-12-01" @default.
- W3197599733 modified "2023-09-23" @default.
- W3197599733 title "Neural network assisted multi-parameter global sensitivity analysis for nanostructure scatterometry" @default.
- W3197599733 cites W1498436455 @default.
- W3197599733 cites W1535712589 @default.
- W3197599733 cites W1826496095 @default.
- W3197599733 cites W1973412675 @default.
- W3197599733 cites W1979459563 @default.
- W3197599733 cites W1981933992 @default.
- W3197599733 cites W1994080277 @default.
- W3197599733 cites W1995367634 @default.
- W3197599733 cites W1996709914 @default.
- W3197599733 cites W2002190158 @default.
- W3197599733 cites W2046427010 @default.
- W3197599733 cites W2048711666 @default.
- W3197599733 cites W2067006558 @default.
- W3197599733 cites W2073344030 @default.
- W3197599733 cites W2093229042 @default.
- W3197599733 cites W2131736128 @default.
- W3197599733 cites W2132296840 @default.
- W3197599733 cites W2135368438 @default.
- W3197599733 cites W2137983211 @default.
- W3197599733 cites W2138002307 @default.
- W3197599733 cites W2163348294 @default.
- W3197599733 cites W2168636812 @default.
- W3197599733 cites W2192203593 @default.
- W3197599733 cites W2256092222 @default.
- W3197599733 cites W2331115995 @default.
- W3197599733 cites W2415598296 @default.
- W3197599733 cites W2524680533 @default.
- W3197599733 cites W2524877167 @default.
- W3197599733 cites W2530644856 @default.
- W3197599733 cites W2534013391 @default.
- W3197599733 cites W2537392793 @default.
- W3197599733 cites W2537666122 @default.
- W3197599733 cites W2539112251 @default.
- W3197599733 cites W2562071510 @default.
- W3197599733 cites W2729558485 @default.
- W3197599733 cites W2756659234 @default.
- W3197599733 cites W2804959352 @default.
- W3197599733 cites W2808180483 @default.
- W3197599733 cites W2886471335 @default.
- W3197599733 cites W2886715786 @default.
- W3197599733 cites W2893056224 @default.
- W3197599733 cites W2897607471 @default.
- W3197599733 cites W2963032118 @default.
- W3197599733 cites W2996186228 @default.
- W3197599733 cites W3008967825 @default.
- W3197599733 cites W344698099 @default.
- W3197599733 cites W636864416 @default.
- W3197599733 cites W925742927 @default.
- W3197599733 doi "https://doi.org/10.1016/j.apsusc.2021.151219" @default.
- W3197599733 hasPublicationYear "2021" @default.
- W3197599733 type Work @default.
- W3197599733 sameAs 3197599733 @default.
- W3197599733 citedByCount "2" @default.
- W3197599733 countsByYear W31975997332022 @default.
- W3197599733 countsByYear W31975997332023 @default.
- W3197599733 crossrefType "journal-article" @default.
- W3197599733 hasAuthorship W3197599733A5005667904 @default.
- W3197599733 hasAuthorship W3197599733A5078064541 @default.
- W3197599733 hasAuthorship W3197599733A5086271665 @default.
- W3197599733 hasConcept C127413603 @default.
- W3197599733 hasConcept C154945302 @default.
- W3197599733 hasConcept C171250308 @default.
- W3197599733 hasConcept C186060115 @default.
- W3197599733 hasConcept C186187911 @default.
- W3197599733 hasConcept C192562407 @default.
- W3197599733 hasConcept C21200559 @default.
- W3197599733 hasConcept C24326235 @default.
- W3197599733 hasConcept C41008148 @default.
- W3197599733 hasConcept C50644808 @default.
- W3197599733 hasConcept C86803240 @default.
- W3197599733 hasConceptScore W3197599733C127413603 @default.
- W3197599733 hasConceptScore W3197599733C154945302 @default.
- W3197599733 hasConceptScore W3197599733C171250308 @default.
- W3197599733 hasConceptScore W3197599733C186060115 @default.
- W3197599733 hasConceptScore W3197599733C186187911 @default.
- W3197599733 hasConceptScore W3197599733C192562407 @default.
- W3197599733 hasConceptScore W3197599733C21200559 @default.
- W3197599733 hasConceptScore W3197599733C24326235 @default.
- W3197599733 hasConceptScore W3197599733C41008148 @default.
- W3197599733 hasConceptScore W3197599733C50644808 @default.
- W3197599733 hasConceptScore W3197599733C86803240 @default.
- W3197599733 hasLocation W31975997331 @default.
- W3197599733 hasOpenAccess W3197599733 @default.
- W3197599733 hasPrimaryLocation W31975997331 @default.
- W3197599733 hasRelatedWork W1692056615 @default.
- W3197599733 hasRelatedWork W1969813393 @default.
- W3197599733 hasRelatedWork W2067604026 @default.
- W3197599733 hasRelatedWork W2159194419 @default.
- W3197599733 hasRelatedWork W2326910001 @default.
- W3197599733 hasRelatedWork W2386387936 @default.