Matches in SemOpenAlex for { <https://semopenalex.org/work/W3197611689> ?p ?o ?g. }
- W3197611689 endingPage "3482" @default.
- W3197611689 startingPage "3482" @default.
- W3197611689 abstract "Sodic soils adversely affect crop production over extensive areas of rain-fed cropping worldwide, with particularly large areas in Australia. Crop phenotyping may assist in identifying cultivars tolerant to soil sodicity. However, studies to identify the most appropriate traits and reliable tools to assist crop phenotyping on sodic soil are limited. Hence, this study evaluated the ability of multispectral, hyperspectral, 3D point cloud, and machine learning techniques to improve estimation of biomass and grain yield of wheat genotypes grown on a moderately sodic (MS) and highly sodic (HS) soil sites in northeastern Australia. While a number of studies have reported using different remote sensing approaches and crop traits to quantify crop growth, stress, and yield variation, studies are limited using the combination of these techniques including machine learning to improve estimation of genotypic biomass and yield, especially in constrained sodic soil environments. At close to flowering, unmanned aerial vehicle (UAV) and ground-based proximal sensing was used to obtain remote and/or proximal sensing data, while biomass yield and crop heights were also manually measured in the field. Grain yield was machine-harvested at maturity. UAV remote and/or proximal sensing-derived spectral vegetation indices (VIs), such as normalized difference vegetation index, optimized soil adjusted vegetation index, and enhanced vegetation index and crop height were closely corresponded to wheat genotypic biomass and grain yields. UAV multispectral VIs more closely associated with biomass and grain yields compared to proximal sensing data. The red-green-blue (RGB) 3D point cloud technique was effective in determining crop height, which was slightly better correlated with genotypic biomass and grain yield than ground-measured crop height data. These remote sensing-derived crop traits (VIs and crop height) and wheat biomass and grain yields were further simulated using machine learning algorithms (multitarget linear regression, support vector machine regression, Gaussian process regression, and artificial neural network) with different kernels to improve estimation of biomass and grain yield. The artificial neural network predicted biomass yield (R2 = 0.89; RMSE = 34.8 g/m2 for the MS and R2 = 0.82; RMSE = 26.4 g/m2 for the HS site) and grain yield (R2 = 0.88; RMSE = 11.8 g/m2 for the MS and R2 = 0.74; RMSE = 16.1 g/m2 for the HS site) with slightly less error than the others. Wheat genotypes Mitch, Corack, Mace, Trojan, Lancer, and Bremer were identified as more tolerant to sodic soil constraints than Emu Rock, Janz, Flanker, and Gladius. The study improves our ability to select appropriate traits and techniques in accurate estimation of wheat genotypic biomass and grain yields on sodic soils. This will also assist farmers in identifying cultivars tolerant to sodic soil constraints." @default.
- W3197611689 created "2021-09-13" @default.
- W3197611689 creator A5003308080 @default.
- W3197611689 creator A5013229412 @default.
- W3197611689 creator A5045952285 @default.
- W3197611689 creator A5062642616 @default.
- W3197611689 creator A5074793066 @default.
- W3197611689 creator A5083252590 @default.
- W3197611689 creator A5091107603 @default.
- W3197611689 date "2021-09-02" @default.
- W3197611689 modified "2023-10-16" @default.
- W3197611689 title "Improving Biomass and Grain Yield Prediction of Wheat Genotypes on Sodic Soil Using Integrated High-Resolution Multispectral, Hyperspectral, 3D Point Cloud, and Machine Learning Techniques" @default.
- W3197611689 cites W1685317713 @default.
- W3197611689 cites W1785063348 @default.
- W3197611689 cites W1977079996 @default.
- W3197611689 cites W1980106854 @default.
- W3197611689 cites W1981479727 @default.
- W3197611689 cites W1983792194 @default.
- W3197611689 cites W1991739869 @default.
- W3197611689 cites W1998997260 @default.
- W3197611689 cites W2002477309 @default.
- W3197611689 cites W2006976511 @default.
- W3197611689 cites W2011010318 @default.
- W3197611689 cites W2012686349 @default.
- W3197611689 cites W2015037454 @default.
- W3197611689 cites W2016090370 @default.
- W3197611689 cites W2024644784 @default.
- W3197611689 cites W2035679275 @default.
- W3197611689 cites W2040650603 @default.
- W3197611689 cites W2041090502 @default.
- W3197611689 cites W2041211524 @default.
- W3197611689 cites W2042966177 @default.
- W3197611689 cites W2043791654 @default.
- W3197611689 cites W2058103077 @default.
- W3197611689 cites W2063623478 @default.
- W3197611689 cites W2064636932 @default.
- W3197611689 cites W2069209512 @default.
- W3197611689 cites W2103867737 @default.
- W3197611689 cites W2113410727 @default.
- W3197611689 cites W2118182135 @default.
- W3197611689 cites W2122284941 @default.
- W3197611689 cites W2123633988 @default.
- W3197611689 cites W2133059825 @default.
- W3197611689 cites W2146105321 @default.
- W3197611689 cites W2161558103 @default.
- W3197611689 cites W2169356188 @default.
- W3197611689 cites W2195361594 @default.
- W3197611689 cites W2250636764 @default.
- W3197611689 cites W2497779359 @default.
- W3197611689 cites W2507541870 @default.
- W3197611689 cites W2514629125 @default.
- W3197611689 cites W2529035713 @default.
- W3197611689 cites W2545669439 @default.
- W3197611689 cites W2546209715 @default.
- W3197611689 cites W2546563532 @default.
- W3197611689 cites W2555576940 @default.
- W3197611689 cites W2593778105 @default.
- W3197611689 cites W2618732405 @default.
- W3197611689 cites W2622954938 @default.
- W3197611689 cites W2646675373 @default.
- W3197611689 cites W2671704260 @default.
- W3197611689 cites W2704880239 @default.
- W3197611689 cites W2728224506 @default.
- W3197611689 cites W2728702183 @default.
- W3197611689 cites W2736116482 @default.
- W3197611689 cites W2744156441 @default.
- W3197611689 cites W2768558813 @default.
- W3197611689 cites W2792434602 @default.
- W3197611689 cites W2794732504 @default.
- W3197611689 cites W2805142011 @default.
- W3197611689 cites W2806658743 @default.
- W3197611689 cites W2810045919 @default.
- W3197611689 cites W2896242594 @default.
- W3197611689 cites W2898710507 @default.
- W3197611689 cites W2918084323 @default.
- W3197611689 cites W2920329608 @default.
- W3197611689 cites W2943031462 @default.
- W3197611689 cites W2945459718 @default.
- W3197611689 cites W2946378069 @default.
- W3197611689 cites W2965620817 @default.
- W3197611689 cites W2971874568 @default.
- W3197611689 cites W2979824366 @default.
- W3197611689 cites W3007651920 @default.
- W3197611689 cites W3011464803 @default.
- W3197611689 cites W3042384763 @default.
- W3197611689 cites W3085980957 @default.
- W3197611689 cites W3125364709 @default.
- W3197611689 cites W3126562212 @default.
- W3197611689 cites W3170599384 @default.
- W3197611689 cites W3171669011 @default.
- W3197611689 cites W3172851299 @default.
- W3197611689 cites W68640414 @default.
- W3197611689 doi "https://doi.org/10.3390/rs13173482" @default.
- W3197611689 hasPublicationYear "2021" @default.
- W3197611689 type Work @default.
- W3197611689 sameAs 3197611689 @default.
- W3197611689 citedByCount "21" @default.
- W3197611689 countsByYear W31976116892022 @default.