Matches in SemOpenAlex for { <https://semopenalex.org/work/W3197615996> ?p ?o ?g. }
Showing items 1 to 62 of
62
with 100 items per page.
- W3197615996 abstract "Abstract Currently the training of neural networks relies on data of comparable accuracy but in real applications only a very small set of high-fidelity data is available while inexpensive lower fidelity data may be plentiful. We propose a new composite neural network (NN) that can be trained based on multi-fidelity data. It is comprised of three NNs, with the first NN trained using the low-fidelity data and coupled to two high-fidelity NNs, one with activation functions and another one without, in order to discover and exploit nonlinear and linear correlations, respectively, between the low-fidelity and the high-fidelity data. We first demonstrate the accuracy of the new multi-fidelity NN for approximating some standard benchmark functions but also a 20-dimensional function that is not easy to approximate with other methods, e.g. Gaussian process regression. Subsequently, we extend the recently developed physics-informed neural networks (PINNs) to be trained with multi-fidelity data sets (MPINNs). MPINNs contain four fully-connected neural networks, where the first one approximates the low-fidelity data, while the second and third construct the correlation between the low- and high-fidelity data and produce the multi-fidelity approximation, which is then used in the last NN that encodes the partial differential equations (PDEs). Specifically, by decomposing the correlation into a linear and nonlinear part, the present model is capable of learning both the linear and complex nonlinear correlations between the low- and high-fidelity data adaptively. By training the MPINNs, we can: (1) obtain the correlation between the low- and high-fidelity data, (2) infer the quantities of interest based on a few scattered data, and (3) identify the unknown parameters in the PDEs. In particular, we employ the MPINNs to learn the hydraulic conductivity field for unsaturated flows as well as the reactive models for reactive transport. The results demonstrate that MPINNs can achieve relatively high accuracy based on a very small set of high-fidelity data. Despite the relatively low dimension and limited number of fidelities (two-fidelity levels) for the benchmark problems in the present study, the proposed model can be readily extended to very high-dimensional regression and classification problems involving multi-fidelity data." @default.
- W3197615996 created "2021-09-13" @default.
- W3197615996 creator A5025814758 @default.
- W3197615996 creator A5082410682 @default.
- W3197615996 date "2019-12-01" @default.
- W3197615996 modified "2023-09-26" @default.
- W3197615996 title "A composite neural network that learns from multi-fidelity data: Application to function approximation and inverse PDE problems" @default.
- W3197615996 hasPublicationYear "2019" @default.
- W3197615996 type Work @default.
- W3197615996 sameAs 3197615996 @default.
- W3197615996 citedByCount "0" @default.
- W3197615996 crossrefType "journal-article" @default.
- W3197615996 hasAuthorship W3197615996A5025814758 @default.
- W3197615996 hasAuthorship W3197615996A5082410682 @default.
- W3197615996 hasConcept C11413529 @default.
- W3197615996 hasConcept C119857082 @default.
- W3197615996 hasConcept C121332964 @default.
- W3197615996 hasConcept C154945302 @default.
- W3197615996 hasConcept C158622935 @default.
- W3197615996 hasConcept C2776459999 @default.
- W3197615996 hasConcept C41008148 @default.
- W3197615996 hasConcept C50644808 @default.
- W3197615996 hasConcept C62520636 @default.
- W3197615996 hasConcept C76155785 @default.
- W3197615996 hasConceptScore W3197615996C11413529 @default.
- W3197615996 hasConceptScore W3197615996C119857082 @default.
- W3197615996 hasConceptScore W3197615996C121332964 @default.
- W3197615996 hasConceptScore W3197615996C154945302 @default.
- W3197615996 hasConceptScore W3197615996C158622935 @default.
- W3197615996 hasConceptScore W3197615996C2776459999 @default.
- W3197615996 hasConceptScore W3197615996C41008148 @default.
- W3197615996 hasConceptScore W3197615996C50644808 @default.
- W3197615996 hasConceptScore W3197615996C62520636 @default.
- W3197615996 hasConceptScore W3197615996C76155785 @default.
- W3197615996 hasLocation W31976159961 @default.
- W3197615996 hasOpenAccess W3197615996 @default.
- W3197615996 hasPrimaryLocation W31976159961 @default.
- W3197615996 hasRelatedWork W197219152 @default.
- W3197615996 hasRelatedWork W2056206083 @default.
- W3197615996 hasRelatedWork W2073085264 @default.
- W3197615996 hasRelatedWork W2289129029 @default.
- W3197615996 hasRelatedWork W2762907586 @default.
- W3197615996 hasRelatedWork W2766678531 @default.
- W3197615996 hasRelatedWork W2895741899 @default.
- W3197615996 hasRelatedWork W2901134369 @default.
- W3197615996 hasRelatedWork W2916035624 @default.
- W3197615996 hasRelatedWork W2919958648 @default.
- W3197615996 hasRelatedWork W2989144367 @default.
- W3197615996 hasRelatedWork W3005875659 @default.
- W3197615996 hasRelatedWork W3013994496 @default.
- W3197615996 hasRelatedWork W3025960559 @default.
- W3197615996 hasRelatedWork W3039209232 @default.
- W3197615996 hasRelatedWork W3103013643 @default.
- W3197615996 hasRelatedWork W3132117132 @default.
- W3197615996 hasRelatedWork W3155957036 @default.
- W3197615996 hasRelatedWork W3193984326 @default.
- W3197615996 hasRelatedWork W3205081178 @default.
- W3197615996 hasVolume "2019" @default.
- W3197615996 isParatext "false" @default.
- W3197615996 isRetracted "false" @default.
- W3197615996 magId "3197615996" @default.
- W3197615996 workType "article" @default.