Matches in SemOpenAlex for { <https://semopenalex.org/work/W3197627620> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W3197627620 abstract "Privacy is of increasing interest in the present big data era, particularly the privacy of medical data. Specifically, differential privacy has emerged as the standard method for preservation of privacy during data analysis and publishing.Using machine learning techniques, we applied differential privacy to medical data with diverse parameters and checked the feasibility of our algorithms with synthetic data as well as the balance between data privacy and utility.All data were normalized to a range between -1 and 1, and the bounded Laplacian method was applied to prevent the generation of out-of-bound values after applying the differential privacy algorithm. To preserve the cardinality of the categorical variables, we performed postprocessing via discretization. The algorithm was evaluated using both synthetic and real-world data (from the eICU Collaborative Research Database). We evaluated the difference between the original data and the perturbated data using misclassification rates and the mean squared error for categorical data and continuous data, respectively. Further, we compared the performance of classification models that predict in-hospital mortality using real-world data.The misclassification rate of categorical variables ranged between 0.49 and 0.85 when the value of ε was 0.1, and it converged to 0 as ε increased. When ε was between 102 and 103, the misclassification rate rapidly dropped to 0. Similarly, the mean squared error of the continuous variables decreased as ε increased. The performance of the model developed from perturbed data converged to that of the model developed from original data as ε increased. In particular, the accuracy of a random forest model developed from the original data was 0.801, and this value ranged from 0.757 to 0.81 when ε was 10-1 and 104, respectively.We applied local differential privacy to medical domain data, which are diverse and high dimensional. Higher noise may offer enhanced privacy, but it simultaneously hinders utility. We should choose an appropriate degree of noise for data perturbation to balance privacy and utility depending on specific situations." @default.
- W3197627620 created "2021-09-13" @default.
- W3197627620 creator A5046176363 @default.
- W3197627620 creator A5047191299 @default.
- W3197627620 creator A5059262053 @default.
- W3197627620 date "2021-01-04" @default.
- W3197627620 modified "2023-09-24" @default.
- W3197627620 title "Local differential privacy in medical domain to protect sensitive information: Algorithm Development and Real-World Validation (Preprint)" @default.
- W3197627620 cites W1557833142 @default.
- W3197627620 cites W1748388722 @default.
- W3197627620 cites W2004131797 @default.
- W3197627620 cites W2061696440 @default.
- W3197627620 cites W2134167315 @default.
- W3197627620 cites W2136114025 @default.
- W3197627620 cites W2159024459 @default.
- W3197627620 cites W2244501064 @default.
- W3197627620 cites W2525984666 @default.
- W3197627620 cites W2744999500 @default.
- W3197627620 cites W2891400669 @default.
- W3197627620 cites W2912213068 @default.
- W3197627620 cites W3000461606 @default.
- W3197627620 cites W3007878074 @default.
- W3197627620 cites W3106378891 @default.
- W3197627620 cites W4235186792 @default.
- W3197627620 cites W4248649186 @default.
- W3197627620 doi "https://doi.org/10.2196/26914" @default.
- W3197627620 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34747711" @default.
- W3197627620 hasPublicationYear "2021" @default.
- W3197627620 type Work @default.
- W3197627620 sameAs 3197627620 @default.
- W3197627620 citedByCount "1" @default.
- W3197627620 countsByYear W31976276202022 @default.
- W3197627620 crossrefType "journal-article" @default.
- W3197627620 hasAuthorship W3197627620A5046176363 @default.
- W3197627620 hasAuthorship W3197627620A5047191299 @default.
- W3197627620 hasAuthorship W3197627620A5059262053 @default.
- W3197627620 hasBestOaLocation W31976276201 @default.
- W3197627620 hasConcept C11413529 @default.
- W3197627620 hasConcept C119857082 @default.
- W3197627620 hasConcept C124101348 @default.
- W3197627620 hasConcept C23130292 @default.
- W3197627620 hasConcept C41008148 @default.
- W3197627620 hasConcept C5274069 @default.
- W3197627620 hasConceptScore W3197627620C11413529 @default.
- W3197627620 hasConceptScore W3197627620C119857082 @default.
- W3197627620 hasConceptScore W3197627620C124101348 @default.
- W3197627620 hasConceptScore W3197627620C23130292 @default.
- W3197627620 hasConceptScore W3197627620C41008148 @default.
- W3197627620 hasConceptScore W3197627620C5274069 @default.
- W3197627620 hasLocation W31976276201 @default.
- W3197627620 hasLocation W31976276202 @default.
- W3197627620 hasLocation W31976276203 @default.
- W3197627620 hasLocation W31976276204 @default.
- W3197627620 hasOpenAccess W3197627620 @default.
- W3197627620 hasPrimaryLocation W31976276201 @default.
- W3197627620 hasRelatedWork W1152161724 @default.
- W3197627620 hasRelatedWork W1990534671 @default.
- W3197627620 hasRelatedWork W2367157954 @default.
- W3197627620 hasRelatedWork W2379604828 @default.
- W3197627620 hasRelatedWork W2953022668 @default.
- W3197627620 hasRelatedWork W2990255990 @default.
- W3197627620 hasRelatedWork W3094086913 @default.
- W3197627620 hasRelatedWork W4226401720 @default.
- W3197627620 hasRelatedWork W4299395718 @default.
- W3197627620 hasRelatedWork W4301892964 @default.
- W3197627620 isParatext "false" @default.
- W3197627620 isRetracted "false" @default.
- W3197627620 magId "3197627620" @default.
- W3197627620 workType "article" @default.