Matches in SemOpenAlex for { <https://semopenalex.org/work/W3197639054> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W3197639054 endingPage "1272" @default.
- W3197639054 startingPage "1264" @default.
- W3197639054 abstract "<p indent=0mm>Backend trajectory optimization is an important part of the visual simultaneous localization and mapping system, which can significantly improve localization accuracy. However, the existing optimization methods based on the bundle adjustment have a large amount of calculation in large scenes and cannot be applied to end-to-end visual odometries. To solve this problem, a universal backend pose graph optimization algorithm with two visual odometries at the front end is proposed, which can be applied to end-to-end visual odometries. This method uses a high-speed but low-precision end-to-end visual odometry to run at high frequency, while a low-speed but high-precision visual odometry runs at a low frequency. Local optimization uses Gauss-Newton method iterative optimization through the constraints provided by two odometries. Global optimization is performed simultaneously which based on key frames scene matching. Experiments show that the simultaneous localization and mapping system which apply this optimization method can run in real-time on the KITTI dataset. Compared with the two visual odometries, the accuracy has been greatly improved. And compared with several well-known open source simultaneous localization and mapping methods that apply backend trajectory optimization, low errors have been achieved in trajectory error, absolute translational error, rotation error and relative pose error, taking into account the advantages of the accuracy of traditional methods and the advantages of high speed end-to-end methods. In addition, the optimization framework can also be applied to other more visual odometries." @default.
- W3197639054 created "2021-09-13" @default.
- W3197639054 creator A5016614058 @default.
- W3197639054 creator A5024859435 @default.
- W3197639054 creator A5050190310 @default.
- W3197639054 creator A5058112241 @default.
- W3197639054 creator A5070721697 @default.
- W3197639054 creator A5073810494 @default.
- W3197639054 creator A5074001824 @default.
- W3197639054 creator A5079594267 @default.
- W3197639054 date "2021-04-01" @default.
- W3197639054 modified "2023-10-18" @default.
- W3197639054 title "A SLAM Pose Graph Optimization Method Using Dual Visual Odometry" @default.
- W3197639054 doi "https://doi.org/10.3724/sp.j.1089.2021.18663" @default.
- W3197639054 hasPublicationYear "2021" @default.
- W3197639054 type Work @default.
- W3197639054 sameAs 3197639054 @default.
- W3197639054 citedByCount "0" @default.
- W3197639054 crossrefType "journal-article" @default.
- W3197639054 hasAuthorship W3197639054A5016614058 @default.
- W3197639054 hasAuthorship W3197639054A5024859435 @default.
- W3197639054 hasAuthorship W3197639054A5050190310 @default.
- W3197639054 hasAuthorship W3197639054A5058112241 @default.
- W3197639054 hasAuthorship W3197639054A5070721697 @default.
- W3197639054 hasAuthorship W3197639054A5073810494 @default.
- W3197639054 hasAuthorship W3197639054A5074001824 @default.
- W3197639054 hasAuthorship W3197639054A5079594267 @default.
- W3197639054 hasBestOaLocation W31976390541 @default.
- W3197639054 hasConcept C11413529 @default.
- W3197639054 hasConcept C115961682 @default.
- W3197639054 hasConcept C121332964 @default.
- W3197639054 hasConcept C1276947 @default.
- W3197639054 hasConcept C13662910 @default.
- W3197639054 hasConcept C137836250 @default.
- W3197639054 hasConcept C154945302 @default.
- W3197639054 hasConcept C173246807 @default.
- W3197639054 hasConcept C179458375 @default.
- W3197639054 hasConcept C19966478 @default.
- W3197639054 hasConcept C31972630 @default.
- W3197639054 hasConcept C41008148 @default.
- W3197639054 hasConcept C52102323 @default.
- W3197639054 hasConcept C5799516 @default.
- W3197639054 hasConcept C86369673 @default.
- W3197639054 hasConcept C90509273 @default.
- W3197639054 hasConceptScore W3197639054C11413529 @default.
- W3197639054 hasConceptScore W3197639054C115961682 @default.
- W3197639054 hasConceptScore W3197639054C121332964 @default.
- W3197639054 hasConceptScore W3197639054C1276947 @default.
- W3197639054 hasConceptScore W3197639054C13662910 @default.
- W3197639054 hasConceptScore W3197639054C137836250 @default.
- W3197639054 hasConceptScore W3197639054C154945302 @default.
- W3197639054 hasConceptScore W3197639054C173246807 @default.
- W3197639054 hasConceptScore W3197639054C179458375 @default.
- W3197639054 hasConceptScore W3197639054C19966478 @default.
- W3197639054 hasConceptScore W3197639054C31972630 @default.
- W3197639054 hasConceptScore W3197639054C41008148 @default.
- W3197639054 hasConceptScore W3197639054C52102323 @default.
- W3197639054 hasConceptScore W3197639054C5799516 @default.
- W3197639054 hasConceptScore W3197639054C86369673 @default.
- W3197639054 hasConceptScore W3197639054C90509273 @default.
- W3197639054 hasIssue "8" @default.
- W3197639054 hasLocation W31976390541 @default.
- W3197639054 hasOpenAccess W3197639054 @default.
- W3197639054 hasPrimaryLocation W31976390541 @default.
- W3197639054 hasRelatedWork W197633916 @default.
- W3197639054 hasRelatedWork W2003315864 @default.
- W3197639054 hasRelatedWork W2082682917 @default.
- W3197639054 hasRelatedWork W2289844917 @default.
- W3197639054 hasRelatedWork W2972219788 @default.
- W3197639054 hasRelatedWork W3098467253 @default.
- W3197639054 hasRelatedWork W3121134787 @default.
- W3197639054 hasRelatedWork W3138755061 @default.
- W3197639054 hasRelatedWork W4309676925 @default.
- W3197639054 hasRelatedWork W4313129847 @default.
- W3197639054 hasVolume "33" @default.
- W3197639054 isParatext "false" @default.
- W3197639054 isRetracted "false" @default.
- W3197639054 magId "3197639054" @default.
- W3197639054 workType "article" @default.