Matches in SemOpenAlex for { <https://semopenalex.org/work/W3197693212> ?p ?o ?g. }
- W3197693212 abstract "Intraoperative frozen section analysis can be used to improve the accuracy of tumour margin estimation during cancer resection surgery through rapid processing and pathological assessment of excised tissue. Its applicability is limited in some cases due to the additional risks associated with prolonged surgery, largely from the time-consuming staining procedure. Our work uses a measurable property of bulk tissue to bypass the staining process: as tumour cells proliferate, they influence the surrounding extra-cellular matrix, and the resulting change in elastic modulus provides a signature of the underlying pathology. In this work we accurately localise atomic force microscopy measurements of human liver tissue samples and train a generative adversarial network to infer elastic modulus from low-resolution images of unstained tissue sections. Pathology is predicted through unsupervised clustering of parameters characterizing the distributions of inferred values, achieving 89% accuracy for all samples based on the nominal assessment (n = 28), and 95% for samples that have been validated by two independent pathologists through post hoc staining (n = 20). Our results demonstrate that this technique could increase the feasibility of intraoperative frozen section analysis for use during resection surgery and improve patient outcomes." @default.
- W3197693212 created "2021-09-13" @default.
- W3197693212 creator A5001633880 @default.
- W3197693212 creator A5015550514 @default.
- W3197693212 creator A5020510152 @default.
- W3197693212 creator A5028040869 @default.
- W3197693212 creator A5028617313 @default.
- W3197693212 creator A5062127623 @default.
- W3197693212 creator A5069891673 @default.
- W3197693212 creator A5071609030 @default.
- W3197693212 creator A5072582268 @default.
- W3197693212 creator A5074781193 @default.
- W3197693212 creator A5077630267 @default.
- W3197693212 creator A5079705055 @default.
- W3197693212 creator A5081629684 @default.
- W3197693212 creator A5083327329 @default.
- W3197693212 date "2021-01-01" @default.
- W3197693212 modified "2023-10-17" @default.
- W3197693212 title "Stain-free identification of tissue pathology using a generative adversarial network to infer nanomechanical signatures" @default.
- W3197693212 cites W1539802681 @default.
- W3197693212 cites W1862989971 @default.
- W3197693212 cites W1940681967 @default.
- W3197693212 cites W1953017246 @default.
- W3197693212 cites W1985231173 @default.
- W3197693212 cites W1985981281 @default.
- W3197693212 cites W1989095124 @default.
- W3197693212 cites W2000967928 @default.
- W3197693212 cites W2003048812 @default.
- W3197693212 cites W2016081742 @default.
- W3197693212 cites W2047602908 @default.
- W3197693212 cites W2063094145 @default.
- W3197693212 cites W2064915680 @default.
- W3197693212 cites W2072546942 @default.
- W3197693212 cites W2077553443 @default.
- W3197693212 cites W2077967017 @default.
- W3197693212 cites W2103208949 @default.
- W3197693212 cites W2166572577 @default.
- W3197693212 cites W2333885919 @default.
- W3197693212 cites W2466945074 @default.
- W3197693212 cites W2505592464 @default.
- W3197693212 cites W2521880954 @default.
- W3197693212 cites W2528535918 @default.
- W3197693212 cites W2587305359 @default.
- W3197693212 cites W2727745521 @default.
- W3197693212 cites W2732701910 @default.
- W3197693212 cites W2734312168 @default.
- W3197693212 cites W2769156273 @default.
- W3197693212 cites W2888512570 @default.
- W3197693212 cites W2892457111 @default.
- W3197693212 cites W2897571599 @default.
- W3197693212 cites W2914800073 @default.
- W3197693212 cites W2920967940 @default.
- W3197693212 cites W2956228567 @default.
- W3197693212 cites W2971477482 @default.
- W3197693212 cites W2974155634 @default.
- W3197693212 cites W2980505231 @default.
- W3197693212 cites W2982728757 @default.
- W3197693212 cites W2998401461 @default.
- W3197693212 cites W3035952088 @default.
- W3197693212 cites W3088376108 @default.
- W3197693212 cites W387778353 @default.
- W3197693212 cites W629214565 @default.
- W3197693212 doi "https://doi.org/10.1039/d1na00527h" @default.
- W3197693212 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34913024" @default.
- W3197693212 hasPublicationYear "2021" @default.
- W3197693212 type Work @default.
- W3197693212 sameAs 3197693212 @default.
- W3197693212 citedByCount "1" @default.
- W3197693212 countsByYear W31976932122022 @default.
- W3197693212 crossrefType "journal-article" @default.
- W3197693212 hasAuthorship W3197693212A5001633880 @default.
- W3197693212 hasAuthorship W3197693212A5015550514 @default.
- W3197693212 hasAuthorship W3197693212A5020510152 @default.
- W3197693212 hasAuthorship W3197693212A5028040869 @default.
- W3197693212 hasAuthorship W3197693212A5028617313 @default.
- W3197693212 hasAuthorship W3197693212A5062127623 @default.
- W3197693212 hasAuthorship W3197693212A5069891673 @default.
- W3197693212 hasAuthorship W3197693212A5071609030 @default.
- W3197693212 hasAuthorship W3197693212A5072582268 @default.
- W3197693212 hasAuthorship W3197693212A5074781193 @default.
- W3197693212 hasAuthorship W3197693212A5077630267 @default.
- W3197693212 hasAuthorship W3197693212A5079705055 @default.
- W3197693212 hasAuthorship W3197693212A5081629684 @default.
- W3197693212 hasAuthorship W3197693212A5083327329 @default.
- W3197693212 hasBestOaLocation W31976932121 @default.
- W3197693212 hasConcept C136229726 @default.
- W3197693212 hasConcept C142724271 @default.
- W3197693212 hasConcept C154945302 @default.
- W3197693212 hasConcept C159985019 @default.
- W3197693212 hasConcept C192562407 @default.
- W3197693212 hasConcept C2781294515 @default.
- W3197693212 hasConcept C41008148 @default.
- W3197693212 hasConcept C43486711 @default.
- W3197693212 hasConcept C71924100 @default.
- W3197693212 hasConcept C73555534 @default.
- W3197693212 hasConcept C74864618 @default.
- W3197693212 hasConcept C95798472 @default.
- W3197693212 hasConceptScore W3197693212C136229726 @default.
- W3197693212 hasConceptScore W3197693212C142724271 @default.
- W3197693212 hasConceptScore W3197693212C154945302 @default.